Mostrando entradas con la etiqueta redes de influencia. Mostrar todas las entradas
Mostrando entradas con la etiqueta redes de influencia. Mostrar todas las entradas

domingo, 23 de febrero de 2020

Guerra de bots en el FC Barcelona

‘Barçagate’: Así actúan los ejércitos de bots maliciosos

Los algoritmos que dirigen a los bots se han convertido en un medio poderoso de comunicación política y es muy difícil llegar a descubrir quiénes son los creadores que están detrás
La Vanguardia

Por Patricia Plaza



Los usuarios que aparecen como destacados, son los más centrales (los que catalizan las conversaciones recibiendo más respuestas, retuits o menciones) en la conversación sobre el hashtag #bartomeuOUT (Social Elephants y Gephi)


Muchos políticos, famosos e influencers se jactan de tener muchos seguidores en las redes sociales. Sin embargo, gran parte de ellos no son de carne y hueso. A estas alturas, la compra de seguidores es un secreto a voces. Algunas empresas ofertan paquetes de 1.000 seguidores falsos en Twitter, Facebook, Instagram o YouTube por el módico precio de 0,89€ (‘Me gustas’ y retuits van aparte).

Pero más allá de engrosar las listas de seguidores, likes y retuits, en los últimos años los bots se han convertido en una forma de manipular a los ciudadanos, siendo también generadores de opinión. Programas informáticos diseñados que actúan como ejércitos para crear comentarios y reforzar la imagen de su amo. Usados por empresas para brindar servicio de atención a sus clientes, o potenciales clientes, para dar una buena experiencia de compra o información. Por ejemplo, un estudio publicado por FakeSpot, denunciaba que el 61% de las reseñas de productos electrónicos de Amazon eran falsas.

La Cadena Ser destapaba esta semana la caja de los truenos, según este medio el FC Barcelona habría contratado una empresa que utilizaba cuentas falsas en las redes para criticar a jugadores y opositores. Un contrato de un millón de euros repartidos en seis cuentas falsas de Facebook distintas. Esa empresa es I3 Ventures, la misma que en junio presentaba un estudio encargado por el FC Barcelona en el que alertaba sobre la presencia de bots. El análisis detectaba que el 30% de los usuarios que hablaban sobre el Barça eran cuentas automatizadas. El propio FC Barcelona presentaba ese estudio y lo publicaba íntegramente en su página web con la voluntad de conocer la percepción de la marca Barça en las redes sociales. Titulado como Análisis del comportamiento de la conversación global digital en torno al FC Barcelona, el informe analizaba la actividad de enero de 2018 a junio de 2019.


Los bots pueden desempeñar actividades maliciosas, como enviar spam, acosar o promover discursos de odio

En un estudio de la Universidad de Oxford sobre las campañas de Trump y Clinton en Twitter en 2016, Phil Howard, profesor de estudios de internet, explicaba que cada vez más políticos y gobiernos de todo el mundo “emplean” tanto bots como personas para gestionar sus conversaciones políticas en las redes sociales. Los bots “pueden desempeñar tareas como suministrar noticias e información”. Y también “actividades maliciosas, como enviar spam, acosar o promover discursos de odio”.

Los algoritmos que dirigen a los bots se han convertido en un medio poderoso de comunicación política y es muy difícil llegar a descubrir quiénes son los creadores que están detrás. Auténticas campañas de marketing diseñadas desde distintas cuentas falsas para llegar a un objetivo común. Es lo que en la jerga marketiniana se denomina astroturfing . Una técnica de propaganda que pretende dar impresión de espontaneidad y popularidad, ocultando al verdadero emisor del mensaje.
Cómo identificar un bot

Los bots intentan actuar como si fueran humanos, pero su intensa actividad les delata. Además de una imagen de perfil y nombre de usuario sospechoso, suele seguir a muchas más cuentas de las que le siguen. Pero lo más relevante es la monotemática de sus publicaciones y su ritmo de publicación constante en el que no parece tener prisa por irse a dormir. Y su velocidad de respuesta sin apenas tiempo para leer los comentarios. Si la cuenta es de muy reciente creación o si descubrimos que usa una App para publicar, también son datos que nos pueden llevar a sospechar.


Si se detectan desviaciones la probabilidad que se trate de un bot es mayor”
Alessandro Bernardi Analista de redes sociales y cofundador de ‘Social Elephants’

Al igual que los virus de ordenador, los criadores de “granjas de bots” han ido perfeccionándolos con el tiempo, emulando cada vez mejor el comportamiento humano. Algunas herramientas como Botometer tratan de detectar bots de Twitter, monitorizando datos públicos de la cuenta y comparándolos con los patrones típicos de cuentas reales. “Si se detectan desviaciones la probabilidad que se trate de un bot es mayor”, explica Alessandro Bernardi, analista de redes sociales y cofundador de Social Elephants.

Por ejemplo, si analizamos la actividad del perfil oficial del FC Barcelona en Twitter (@FCBarcelona_es), Botometer nos indica que tiene 0.1/5 probabilidades de ser un bot, es decir que tiene un comportamiento muy humano:

Botometer establece que la cuenta de Twitter @FCBarcelona_es solo tiene 0.1/5 probabilidades de ser un bot (Botometer)

En el caso del Barçagate las supuestas cuentas falsas son páginas de Facebook, una red social que ofrece muy pocos datos públicos, lo que limita mucho poder identificar si se trata de bots o no. Un estudio de la israelí Reblaze llamado El Estado de la Protección de los Bots 2019 muestra que 62% de los usuarios de internet, donde se incluyen las redes sociales, son bots. Y de esos, el 38% son denominados “malos”, es decir, que atentan contra la integridad de las personas, de las empresas o son usadas en favor de un gobierno o partido político. “Según un reportaje de Wired con datos de Robhat Labs se ha estimado que en el caso de ciertos eventos de debate político los bots pueden llegar a contribuir hasta un 60% de toda la actividad”, afirma Bernardi.

Bots de guerrilla usados para destruir, acosar y promover discursos de odio. Una sutileza y hostilidad que preocupa tanto a autoridades como a empresarios y a usuarios de las redes.

Aunque en realidad, según Bernardi, en el caso del Barçagate no haría falta usar bots para realizar una acción en redes sociales: “Con un presupuesto de un millón de euros sería más fácil poner un equipo humano a gestionar personalmente ciertas cuentas distribuyendo ciertos contenidos estratégicamente preparados”.

Sean humanos o bots los que estén detrás de estos perfiles de Facebook, la verdad es que es muy difícil descubrir quién es el verdadero emisor de los mensajes y quién está detrás de todas las publicaciones que difaman a jugadores. Y aquí está el quid de la cuestión: si es el FC Barcelona el que desarrolla su propia campaña o si se trata de una fuente externa. Las dudas son muy amplias y la incertidumbre se ciñe sobre la sombra del propio Bartomeu. El Barça rompía su contrato con I3 Ventures, al mismo tiempo que I3 Ventures negaba haber cobrado un millón de euros del Barça para monitorizar las redes.

¿Las redes sociales están haciendo algo para frenar la presencia de bots?


Twitter lleva tiempo diciendo que está trabajando en un “sello” (similar al de las cuentas verificadas) para poder distinguir entre cuentas de humanos y de bots. “Tanta tiene que ser la desesperación de esta red social que recientemente su fundador (Jack Dorsey) le llegó a preguntar a Elon Musk si se les ocurría una manera de ‘arreglar Twitter’”, explica Bernardi.

De todas formas Twitter ya ha bloqueado unas cuantas de las cuentas implicadas en el reciente Barçagate. A lo mejor por denuncia de alguien o porque la misma red social ha detectado un comportamiento anómalo que incumple sus normas, no necesariamente de bot:


Twitter ha bloqueado alguna de las cuentas en Twitter vinculadas al 'Barçagate' (Twitter)

Alessandro Bernardi ha analizado en Botometer las distintas cuentas que en la información de la Cadena Ser se citan como bots y que no aparecen como bloqueadas. “En dos casos detectamos algo de probabilidad que realmente sea un bot, pero por ejemplo la cuenta de ‘Mes Que un Club’, sale un comportamiento prácticamente humano. Así que quizás tendríamos que dejar de pensar si hablamos de bots o no, y poner el foco en si hubo o no una estrategia maliciosa y un intento de manipulación, aunque sea que fuera operado por humanos”.

Según la actividad de la cuenta en Twitter de @AlterSports, Botometer detecta que tiene 2,1/5 probabilidades de ser un bot (Botometer) Según la actividad de la cuenta @SportsLeaksCom en Twitter, Botometer detecta que tiene 1,4/5 probabilidades de ser un bot (Botometer) Según la actividad de la cuenta @MésQueUnClub en Twitter, Botometer detecta que tiene 0,2/5 probabilidades de ser un bot (Botometer)

A modo de ejemplo, el analista de redes sociales y cofundador de Social Elephants ha elaborado para La Vanguardia una monitorización del hashtag #bartomeuOUT durante esta semana, antes y después que saliera a la luz la información de la Cadena Ser sobre las supuestas cuentas falsas de Facebook.

Social Elephants ha contabilizado más de 90.000 tuits esta semana con el hahstag #bartomeuOut:
Este gráfico muestra la actividad de unos 90.000 tuits que usaron el hashtag #bartmeuOUT en Twitter entre el 12 y el 20 de febrero. (Social Elephants)

Los autores de los tuits son sobre todo hombres y medios de comunicación:
Los autores de los tuits que han usado el hashtag #BartomeuOUT entre el 12 y el 20 de febrero son sobre todo hombres y medios (Social Elephants)

Los usuarios son en su mayoría de Barcelona: Los usuarios que han usado el hashtag #bartomeuOUT entre el 12 y el 20 de febrero son en su mayoría de Barcelona (Social Elephants)

Analizando las conversaciones, este mapa identifica quién habla con quién y cuáles son los diferentes grupos de usuarios que hablan de temas en común (identificados por colores diferentes). Los usuarios que aparecen como destacados son los usuarios mas centrales (los que catalizan las conversaciones recibiendo más respuestas, retuits o menciones) en la conversación sobre el hashtag #bartomeuOUT:

  Los usuarios que aparecen como destacados, son los más centrales (los que catalizan las conversaciones recibiendo más respuestas, retuits o menciones) en la conversación sobre el hashtag #bartomeuOUT (Social Elephants y Gephi)

También puede ser interesante tratar de identificar bots que hayan usado el hashtag #bartomeuOUT, por ejemplo buscando entre los usuarios que sospechosamente hacen muchos retuits a los demás: Estos son los usuarios que sospechosamente hacen muchos RTs a los demás con el hashtag #bartomeuOUT (Social Elephants)

Entre estos destaca el caso de @BartomeuVerdugo. Esta cuenta tiene solo seis seguidores y más de 300 retuits tan solo a tuits que contienen el hashtag #bartomeuOUT:
Curioso el caso de @BartmoeuVerdugo con tan solo 6 followers y mas de 300 Retweets tan solo a tweets que contengan el hashtag #bartmeuOUT (Twitter)

Irónico que en su perfil, este usuario se defina como “no soy un robot”. Sin embargo, como siempre hay bots que saben disimular peor o mejor, Botometer es bastante claro en identificarlo como bot con un 3.9/5 de probabilidad:
Según la actividad de la cuenta @BartmoeuVerdugo en Twitter, Botometer detecta que tiene 3,9/5 probabilidades de ser un bot (Botometer)

Tras este análisis, podemos concluir que la guerra de bots no solo la juega una parte. Sea o no sea el FC Barcelona quien está detrás de las cuentas falsas que refuerzan la imagen de Bartomeu y atacan a los jugadores, lo que sí es cierto es que, como en todos los ámbitos de la vida, la guerra también se lucha desde el otro lado. Todo es un tira y afloja en el que existen bots para todos los gustos.

jueves, 14 de febrero de 2019

Redes de influencia de estilos musicales

Los ciclos de la moda y el arte son impulsados por señales de contra-dominantes de la competencia de élite: Evidencia cuantitativa de estilos musicales


Peter Klimek ,
Robert Kreuzbauer y
Stefan Thurner
https://doi.org/10.1098/rsif.2018.0731

Resumen

Los sistemas de símbolos humanos, como el arte y los estilos de moda, surgen de procesos sociales complejos que rigen la reorganización continua de las sociedades modernas. Proporcionan un esquema de señalización que permite a los miembros de una élite distinguirse del resto de la sociedad. Los esfuerzos por comprender la dinámica del arte y los ciclos de la moda se han colocado en las teorías "de abajo hacia arriba" y "de arriba hacia abajo". De acuerdo con las teorías "de arriba a abajo", los miembros de la élite señalan su estado superior al introducir nuevos símbolos (por ejemplo, estilos de moda), que son adoptados por grupos de bajo estado. En respuesta a esta adopción, los miembros de la élite tendrían que introducir nuevos símbolos para indicar su estado. De acuerdo con muchas teorías "de abajo hacia arriba", los ciclos de estilo evolucionan de clases más bajas y siguen un patrón esencialmente aleatorio. Proponemos una explicación alternativa basada en la señalización de dominación dominante (CDS). En CDS, los miembros de la élite quieren que otros imiten sus símbolos; los cambios solo ocurren cuando los grupos externos desafían con éxito a la élite mediante la introducción de señales que contrastan con las respaldadas por la élite. Investigamos estos mecanismos utilizando un enfoque de red dinámico en datos que contienen casi 8 millones de álbumes de música lanzados entre 1956 y 2015. La red cuantifica sistemáticamente las similitudes artísticas de los estilos musicales de la competencia y sus cambios a lo largo del tiempo. Formulamos pruebas empíricas para determinar si se introducen nuevos símbolos por parte de los miembros de la élite actuales (arriba-abajo), aleatoriedad (abajo-arriba) o por grupos periféricos a través de señales de dominación dominante. Encontramos evidencia clara de que CDS impulsa cambios en los estilos musicales. Esto proporciona una respuesta cuantitativa, completamente basada en datos, a un debate centenario sobre la naturaleza de las dinámicas sociales subyacentes de los ciclos de la moda. 



Evolución de la red para competir teorías del cambio cultural. (a) Las características de cada estilo musical (círculos azules) vienen dadas por los instrumentos que típicamente están asociados con este estilo (cuadrados verdes). Las similitudes de dos estilos musicales se miden por la cantidad de instrumentos que comparten, lo que lleva a una red de similitud de estilo. El tamaño de los círculos es proporcional a su popularidad; El grosor del enlace que conecta dos estilos es proporcional a su similitud. (b) Las teorías competitivas del cambio cultural implican diferentes tipos de evolución de la red de estilos musicales. Consideramos una red con una elite (corona amarilla) que inicialmente se adhiere al estilo i. El estilo popular i será imitado por otros estilos (los enlaces a i aumentan en grosor). Siguiendo la costosa teoría de la señalización (ST), la élite busca diferenciarse de los imitadores y adopta un nuevo estilo, k. La teoría de patrones aleatorios (RPT) sugiere que una nueva elite (corona verde) emergerá en una posición aleatoria en la red. La señalización de dominación dominante (CDS) predice el surgimiento de una nueva contra-élite (azul, corona invertida) que es muy diferente a la elite actual, que se muestra aquí para el estilo j. (c) Las tres teorías, ST, RPT y CDS, dan lugar a ciclos de moda en los que el estilo i inicialmente aumenta en popularidad bajo la imitación de otros estilos hasta que surge un nuevo estilo a través de ST, RPT o CDS, y luego domina el siguiente ciclo de moda . (Versión en línea en color.)


Dinámica de la red de similitud estilo-estilo. Mostramos el MST de la red de similitud estilo-estilo durante tres intervalos de tiempo. Los nodos corresponden a estilos con colores dados por su género. El tamaño de los nodos es proporcional a su popularidad, ns (t). Existe una gran cantidad de estilos en la periferia de la red con importantes ganancias en popularidad, mientras que algunos estilos en el núcleo de la red disminuyen en popularidad, por ejemplo. Estilos de música latina. (Versión en línea en color.)