Mostrando entradas con la etiqueta bibliometría. Mostrar todas las entradas
Mostrando entradas con la etiqueta bibliometría. Mostrar todas las entradas

domingo, 20 de diciembre de 2020

ARS: Usando mapeos de revistas para conocer sus contenidos a través de la visualización

Cómo generar conocimientos de revistas utilizando técnicas de visualización

Generación de conocimientos sobre el rendimiento de la revista
Por la Dra. Daphne van Weijen y Matthew Richardson || Elsevier




Los editores y editores siempre sienten curiosidad por saber cómo se está desempeñando su revista en comparación con otras en el campo. También están ansiosos por descubrir si el contenido que están publicando está atrayendo citas. En este artículo, nos gustaría compartir con usted una serie de técnicas de visualización que pueden ayudar a generar conocimientos sobre el rendimiento de la revista.

Mapeo de términos

¿Cómo puede determinar cuáles son los temas "candentes" en una revista, grupo de revistas o área temática específica? O, más específicamente, ¿qué temas han mostrado un crecimiento activo y un fuerte impacto en la producción de investigación (artículos publicados) en los últimos años? Para responder a esta pregunta, desarrollamos una nueva herramienta de visualización en colaboración con el grupo de investigación CWTS, que se especializa en bibliometría en la Universidad de Leiden. La herramienta tiene acceso a todas las revistas y actas de congresos indexados en Scopus. A partir de esta información, puede generar mapas que revelen las relaciones entre los términos utilizados en los títulos y los resúmenes de los artículos publicados en una o más revistas seleccionadas. Lo hace con la ayuda de un programa de computadora llamado VOSviewer (1).
¿Cómo se crea un mapa de términos?

Hay una serie de pasos involucrados en la producción de un mapa de términos.

  • Primero debemos determinar qué revista o revistas deben incluirse. Si un grupo de revistas o un área temática es el foco del análisis, una búsqueda de palabras clave en Scopus puede ayudar con esto.
  • Una vez elegidas las revistas, la herramienta realiza un análisis de las palabras y frases encontradas en los títulos y resúmenes de los artículos durante un período de tiempo específico (por ejemplo, en los últimos dos, cinco o diez años). Las ventanas de publicación y cita pueden tener valores separados, por lo que también es posible determinar qué tan bien se ha citado el contenido publicado en un año específico en los años posteriores a la publicación.
  • Después de que se genera un mapa, se puede verificar si hay términos no informativos, como nombres de editoriales o sociedades, y términos genéricos como "literatura", "presentación" o "característica". Estos se pueden eliminar y, si es necesario, se puede crear una nueva versión del mapa.

Grupos de términos concurrentes

El mapa que se muestra en la Figura 1 se conoce como mapa de conglomerados de co-ocurrencia. Cada término que aparece al menos cinco veces en los títulos y resúmenes de los artículos de las revistas seleccionadas está representado por un nodo individual en el mapa. Cuanto más grande es el nodo, más artículos contienen el término y cuanto más pequeño es el espacio entre los términos, más a menudo tienden a coexistir. Sin embargo, es importante señalar que esta es una representación 2D de una red multidimensional, por lo que la proximidad de los términos no puede reflejar perfectamente la relación en todos los casos. Finalmente, los términos están coloreados en grupos de términos que tienden a coexistir.

  • Verde (centro y arriba a la izquierda) relacionado con estadísticas y experimentos;
  • grupo rojo (lado derecho) relacionado con la educación en enfermería;
  • grupo azul (abajo a la izquierda) relacionado con la cirugía; y
  • grupo amarillo (izquierda) relacionado con ensayos clínicos y revisiones de la literatura.

La experiencia en el campo puede ayudar a verificar y nombrar adecuadamente los clústeres, así como a predecir qué clústeres es probable que contengan el contenido más citado y por qué.


Figura 1 - Mapa de similitud de clústeres de co-ocurrencia de términos de revistas para un grupo de seis revistas de enfermería seleccionadas de 2009-2012. Fuente: Scopus. Figura 1 - Mapa de similitud de clústeres de co-ocurrencia de términos de revistas para un grupo de seis revistas de enfermería seleccionadas de 2009-2012. Fuente: Scopus.

Términos muy citados

El siguiente paso para determinar los temas candentes en el campo es verificar qué términos se citan relativamente bien en comparación con el resto del contenido publicado en la (s) revista (s). Esto se puede hacer cambiando el color en el mapa de conglomerados para mostrar el impacto medio de las citas de los artículos que contienen ese término, en relación con el impacto medio de las citas (1,00) de todos los artículos incluidos en el mapa (Figura 2). Como las publicaciones más antiguas han tenido más tiempo para ser citadas, las citas se normalizan por año de publicación para hacer posible una comparación justa. En la Figura 2, los términos con un impacto de citas por encima del promedio están coloreados en rojo, los términos con un impacto de citas promedio son verdes y los términos con un impacto de citas por debajo del promedio se muestran en azul.


Figura 2 - Mapa de impacto de citas de co-ocurrencia de términos de revistas para un grupo de seis revistas de enfermería seleccionadas de 2009-2012. Fuente: Scopus Figura 2 - Mapa de impacto de citas de co-ocurrencia de términos de revistas para un grupo de seis revistas de enfermería seleccionadas de 2009-2012. Fuente: Scopus

Podemos ver claramente que los términos relativamente citados tienden a aparecer a la izquierda del mapa. Estos son términos que se encuentran principalmente en los grupos amarillo y verde de la Figura 1, relacionados con experimentos (verde) y ensayos clínicos (amarillo). Los términos muy citados en estas áreas incluyen:

  • Nurse staffing, self-esteem y statistical terms (Dotación de personal de enfermería, autoestima y términos estadísticos) (grupo verde, arriba a la izquierda).
  • Depressive symptoms, meta-analysis, pregnancy y controlled trials (Síntomas depresivos, metaanálisis, embarazo y ensayos controlados) (grupo amarillo, lado izquierdo).

¿Temas de actualidad?

Finalmente, se puede realizar una búsqueda de palabras clave de Scopus para los términos en el mapa con el mayor impacto relativo de citas, para determinar si se trataba de ocurrencias aisladas. El resultado de esta búsqueda de palabras clave, restringida al campo de enfermería, confirmó que había al menos cuatro áreas en este análisis que tenían una tasa de crecimiento anual compuesta (CAGR) de más del 5 por ciento, lo que indica que hubo un aumento por encima del promedio en el número de artículos publicados en estas áreas durante los últimos cinco años, ya que el CAGR promedio es del 3 al 5 por ciento (ver Tabla 1).


Tabla 1 - En la Figura 2, se identificaron términos relativamente citados. En esta tabla, enumeramos la cantidad de artículos que presentan esos términos junto con sus tasas de crecimiento anual compuestas. Fuente: Scopus
 

La búsqueda de palabras clave de Scopus confirmó que los temas sugeridos por el mapa eran de hecho temas que han estado llamando la atención en el campo. Aunque este mapa específico a nivel de campo es algo genérico, proporciona una idea general de dónde buscar temas candentes con más detalle.

Experiencias de un editor
El Dr. Paul H. Gobster es un científico social investigador del Servicio Forestal del Departamento de Agricultura de los Estados Unidos (USDA). Acaba de dimitir después de cuatro años como coeditor en jefe de Landscape and Urban Planning de Elsevier, permaneciendo en la junta de la revista como editor asociado. Él y sus colegas utilizaron mapas de términos para ayudar en el desarrollo de un editorial para el 40 aniversario de la revista (2).

El Dr. Gobster dijo: “Identificamos conceptos y temas importantes representados en su contenido publicado y desarrollamos una serie de tiempo de cuatro mapas para describir cualitativamente los cambios en cada década sucesiva.

El término mapas fue relativamente fácil de interpretar y produjo visualizaciones adecuadas para presentarlas a los lectores dentro de nuestra editorial. Creo que el término mapas tiene un valor adicional para las funciones de planificación estratégica y administrativa de la revista; la agrupación puede ayudar a aclarar el contenido temático para la clasificación de manuscritos y la asignación de presentaciones a los editores asociados, y los grupos y términos específicos (su presencia, posiciones y cualquier cambio). con el tiempo) puede ayudar a identificar subtemas de trabajo emergentes y duraderos ".

Los beneficios del mapeo de revistas

Mientras que los mapas de términos se utilizan para resaltar los temas publicados dentro de una revista o disciplina, el mapeo de revistas se puede utilizar para examinar la posición y el alcance de una revista y sus interacciones con otras revistas en el campo. Al igual que con los mapas de términos, Scopus puede proporcionar los datos de origen, lo que garantiza que el análisis se base en todas las revistas indexadas.

Estos mapas de revistas se crean mediante enlaces de citas. Una cita de un artículo publicado en una revista a un artículo publicado en otra establece que sus respectivos contenidos son relevantes entre sí y sugiere un nivel de similitud entre los dos. En un período de tiempo dado, una revista tiende a contener citas de muchas otras revistas, y las que más cita deben ser las revistas con las que está más estrechamente relacionada. Por ejemplo, si la Revista A proporciona muchas citas a la Revista B y solo unas pocas a la Revista C, esto es una señal de que tiene una conexión más fuerte con la Revista B. Si con el tiempo el saldo cambia de modo que comienza a proporcionar más citas a la Revista. C, esto indica que el alcance de las revistas o la estructura del campo está cambiando y se está volviendo progresivamente más relacionado con la Revista C. Cuando los enlaces de citas se construyen en muchas más revistas que en este ejemplo simplificado, un mapa es una opción conveniente. forma de mostrar los enlaces y ver cómo interactúan las revistas para formar grupos más grandes.

Consulte la Figura 3 para ver un ejemplo de un mapa de revistas basado en las mismas seis revistas de enfermería utilizadas en los ejemplos de mapas de términos anteriores.


Figura 3 - Mapa de revistas basado en un grupo de seis revistas de enfermería seleccionadas de 2009-2012 


Cada revista en el mapa se muestra como un nodo (círculo), con el tamaño determinado por el promedio de citas a los artículos de esa revista en el período de tiempo. Puede ver en la Figura 3 que las revistas de medicina general incluidas en el mapa tienen un impacto promedio de citas mucho más alto que las otras revistas. Las revistas seleccionadas están en azul y todas pertenecen a la región de las revistas principales de enfermería, mientras que otras revistas están en gris y se incluyen debido a sus enlaces de citas a estas revistas semilla. Las relaciones de citas se muestran como bordes (líneas) de grosor variable. Estas relaciones de citas se normalizan por el número de citas recibidas por la revista citada y por el número de citas dadas por la revista que cita. Cuanto más gruesa sea la línea, mayor será la proporción de citas representadas.

En este ejemplo de mapeo, las áreas clave de las diferentes especialidades de las ciencias de la salud se han etiquetado en función de los grupos de revistas. Esto le permite ver los vínculos entre especialidades más amplias, así como revistas individuales. Estas agrupaciones tenderán a ser bastante estables, pero comparar mapas basados ​​en diferentes períodos de tiempo le permite identificar revistas emergentes en un área determinada o las relaciones de investigación cambiantes que hacen que un área temática se vuelva más relevante para otra con el tiempo.

El entorno de citas en el que se encuentra una revista es único y dinámico, y el análisis de este puede utilizarse como un medio objetivo para determinar la posición competitiva de una revista establecida en un campo de investigación.


Usar los mapas para respaldar su trabajo

Tanto el mapeo de términos como el mapeo de revistas pueden ayudar a comparar la revista con la competencia y proporcionar información útil para las reuniones del consejo editorial. Si bien en el texto anterior se han sugerido algunas razones estratégicas para usar estas herramientas analíticas, su ventaja real radica en cuán adaptables son a diferentes preguntas de investigación. Si desea saber más acerca de cómo estas herramientas pueden ayudarlo, u otras herramientas analíticas para proporcionar información sobre la posición de su revista, comuníquese con su editor.

Referencias

(1) Van Eck, N.J., & Waltman, L. (2010) “Software survey: VOSviewer, a computer program for bibliometric mapping”, Scientometrics, Vol 84, No. 2, pp. 523–538.

(2) Gobster, P.H. (2014) “(Text) Mining the LANDscape: Themes and trends over 40 years of Landscape and Urban Planning”, Landscape and Urban Planning, Vol 126, pp. 21–30.

jueves, 28 de noviembre de 2019

Importando redes de coautoría y bibliográficas con VOSviewer

Visualizar datos de citas disponibles gratuitamente usando VOSviewer

Nees Jan van Eck, Ludo Waltman
CWTS



Crossref, I4OC, datos abiertos, software, visualización, VOSviewer

Hoy lanzamos la versión 1.6.6 de nuestro software VOSviewer para construir y visualizar redes bibliométricas. La nueva característica más importante en esta versión es el soporte para trabajar con datos Crossref. Recientemente, la Iniciativa para Citas Abiertas (I4OC) (Initiative for Open Citations (I4OC)) logró convencer a un gran número de editores científicos para que las listas de referencias de publicaciones en sus revistas estén disponibles gratuitamente a través de Crossref. Gracias a I4OC, Crossref se ha convertido en una valiosa fuente de datos para los usuarios de VOSviewer. En esta publicación de blog, discutimos cómo los usuarios de la nueva versión 1.6.6 de VOSviewer pueden beneficiarse de los datos de Crossref.

Usando datos Crossref en VOSviewer


Hay dos formas en que VOSviewer admite el uso de datos Crossref:

  1. Un usuario de VOSviewer puede proporcionar un conjunto de DOI a VOSviewer. Usando la interfaz de programación de aplicaciones (API) de Crossref, VOSviewer descargará datos para las publicaciones correspondientes.
  2. Un usuario de VOSviewer puede trabajar directamente con la API Crossref para descargar datos y luego puede proporcionar los datos descargados como entrada para VOSviewer.

El primer enfoque es el más fácil, ya que no requiere que los usuarios trabajen directamente con la API Crossref. Cuando los usuarios ya tienen DOI de las publicaciones que les gustaría analizar (por ejemplo, publicaciones incluidas en el sistema de información de investigación de su universidad), recomendamos utilizar el primer enfoque. El segundo enfoque es un poco más complejo, pero tiene la ventaja de ofrecer mucha más flexibilidad. Ahora exploraremos el segundo enfoque con más detalle.

Descargar datos utilizando la API Crossref


Para demostrar el uso de la API Crossref, recopilamos datos sobre publicaciones en dos revistas cienciométricas, Journal of Informetrics y Scientometrics, en el período 2007-2016. En cada llamada a la API, se pueden obtener datos para un máximo de 1000 publicaciones. Por lo tanto, necesitamos hacer múltiples llamadas a la API. Elegimos hacer llamadas separadas para cada una de las dos revistas.

El número de publicaciones en el Journal of Informetrics en el período 2007-2016 es inferior a 1000. Por lo tanto, la fecha del Journal of Informetrics se puede obtener en una sola llamada API. Para realizar esta llamada a la API, ingresamos la siguiente URL en un navegador web:

http://api.crossref.org/works?filter=issn:1751-1577,from-pub-date:2007-01-01,until-pub-date:2016-12-31&rows=1000

La URL especifica una solicitud para la API Crossref. La solicitud API incluye el número ISSN de Journal of Informetrics (es decir, 1751-1577), así como la fecha de inicio y la fecha de finalización del período de tiempo que nos interesa. El parámetro de filas en la API de solicitud indica que nos gustaría recibir datos de hasta 1000 publicaciones. Al ingresar la URL anterior en un navegador web, hacemos una llamada a la API de Crossref para solicitar datos sobre todas las publicaciones en Journal of Informetrics en el período 2007-2016. Después de esperar un tiempo, el navegador web presentará el resultado de la llamada API. Guardamos este resultado en un archivo llamado JOI.json. Este es un llamado archivo JSON.

Seguimos el mismo enfoque para Scientometrics. Sin embargo, Scientometrics es una revista más grande y, por lo tanto, necesitamos hacer tres llamadas API, cada una de las cuales genera datos para la mayoría de las 1000 publicaciones. Usamos las siguientes URL:

http://api.crossref.org/works?filter=issn:0138-9130,desde-pub-date:2007-01-01,until-pub-date:2016-12-31&rows=1000

http://api.crossref.org/works?filter=issn:0138-9130,desde-pub-date:2007-01-01,until-pub-date:2016-12-31&rows=1000&offset=1000

http://api.crossref.org/works?filter=issn:0138-9130,desde-pub-date:2007-01-01,until-pub-date:2016-12-31&rows=1000&offset=2000

Las tres llamadas API son idénticas, excepto que en la segunda y tercera llamada usamos el parámetro offset para especificar que queremos obtener datos para un segundo y un tercer lote de publicaciones. Guardamos los resultados de las llamadas a la API en tres archivos JSON.

Ahora hemos dado una demostración simple del uso de la API Crossref. La API Crossref ofrece muchas más opciones. Para obtener más información, consulte la documentación de la API.



Crear visualizaciones bibliométricas basadas en datos Crossref


Primero usamos los datos descargados de Crossref para ver la red de investigadores de coautoría en el campo de la cienciometría. En el asistente Crear mapa en VOSviewer, elegimos la opción Crear un mapa basado en datos bibliográficos. En el segundo paso del asistente, vamos a la pestaña Crossref JSON, donde seleccionamos los cuatro archivos JSON descargados. Después de elegir realizar un análisis de coautoría, simplemente usamos las opciones predeterminadas en los pasos restantes del asistente. La visualización de la red de coautoría resultante se presenta a continuación.


Red de coautoría Crossref de investigadores cienciométricos

A continuación, utilizamos nuestros datos Crossref para ver la red de acoplamiento bibliográfico de publicaciones en el campo de la cienciometría. Dos publicaciones tienen un enlace de acoplamiento bibliográfico si tienen una o más referencias en común. Nuevamente elegimos Crear un mapa basado en datos bibliográficos en el asistente Crear mapa. Después de seleccionar nuestros cuatro archivos JSON, elegimos realizar un análisis de acoplamiento bibliográfico a nivel de documento. Utilizamos las opciones predeterminadas en los pasos restantes del asistente, lo que significa que nuestra red de acoplamiento bibliográfico incluye las 500 publicaciones con el mayor número de enlaces de acoplamiento bibliográfico. La visualización de la red se muestra a continuación.


Red de acoplamiento bibliográfico cruzado de publicaciones cienciométricas

El examen de la red de acoplamiento bibliográfico puede revelar algo inesperado. Las 500 publicaciones incluidas en la red de acoplamiento bibliográfico han aparecido en Scientometrics. La red no incluye publicaciones del Journal of Informetrics. Esto demuestra una limitación importante de los datos de Crossref. Gracias a I4OC, muchas editoriales hoy en día hacen que las listas de referencias de publicaciones en sus revistas estén disponibles a través de Crossref. Sin embargo, algunos editores de no (¿todavía?) Participan en I4OC. Este es también el caso de Elsevier, el editor de Journal of Informetrics. Debido a que las listas de referencias de publicaciones en Journal of Information no están disponibles a través de Crossref, las publicaciones de esta revista no pueden incluirse en un análisis de acoplamiento bibliográfico basado en datos de Crossref.

Ejemplo a gran escala

Ahora hemos proporcionado ejemplos relativamente pequeños del uso de datos Crossref en VOSviewer. También es posible usar datos Crossref a una escala mucho mayor en VOSviewer, pero esto requiere un esfuerzo significativo en el procesamiento previo de los datos. Para ilustrar el uso a gran escala de los datos de Crossref, utilizamos los datos para ver la red de citas de 5000 revistas de todos los campos de la ciencia.

Utilizando la API Crossref, descargamos datos para todas las publicaciones en el período 1980-2016. La cantidad de datos era muy grande y, por lo tanto, la fecha debía procesarse previamente para poder proporcionarse como entrada a VOSviewer. Los datos se almacenaron en una base de datos relacional. Usando esta base de datos, hemos identificado todas las revistas (así como las actas de conferencias y series de libros) que tienen al menos 100 publicaciones para las cuales hay una lista de referencias disponible. Luego construimos la red de enlaces de citas entre las revistas identificadas. La dirección de un enlace de citas se ignoró, por lo que no se hizo distinción entre una cita del diario A al diario B y una cita del diario B al diario A. La red de citas del diario se guardó en un archivo de red VOSviewer, y este archivo se utilizó como entrada para VOSviewer. En VOSviewer, se seleccionaron las 5000 revistas con el mayor número de enlaces de citas con otras revistas y se visualizó la red de citas de estas 5000 revistas. La visualización resultante se presenta a continuación. Se puede abrir una visualización interactiva en VOSviewer haciendo clic aquí.


Red de citas de referencias cruzadas

La visualización muestra una estructura de la ciencia que es bien conocida de las visualizaciones bibliométricas a gran escala anteriores, que se basaron en datos de Web of Science o Scopus. Las revistas de matemática, informática e ingeniería se pueden encontrar en el centro del área inferior de la visualización. Las revistas de ciencias físicas se encuentran en el área correcta de la visualización, mientras que las revistas de ciencias de la vida y médicas se pueden encontrar en el área superior. Finalmente, las revistas de ciencias sociales se encuentran en el área inferior izquierda de la visualización. Faltan algunas revistas importantes en la visualización. Estas revistas tienen un editor que no participa en I4OC y que no pone a disposición las listas de referencias de publicaciones a través de Crossref.


Conclusión

Gracias a I4OC, Crossref se ha convertido en una valiosa fuente de datos de citas disponibles gratuitamente. Los datos de citas cruzadas se pueden utilizar para muchos propósitos, incluido el análisis y la visualización de redes de citas de revistas, investigadores y publicaciones individuales. La versión 1.6.6 de VOSviewer proporciona soporte directo para usar datos Crossref para ver redes de citas. Esperamos que esta nueva funcionalidad de VOSviewer ofrezca una demostración convincente del valor de los datos de citas disponibles gratuitamente. Alentamos a los editores que aún no participan en I4OC a unirse a la iniciativa y a que las listas de referencias de publicaciones en sus revistas estén disponibles gratuitamente.

miércoles, 10 de julio de 2019

Explicando diferencias de género en la academia: La duración de la carrera explica mucho

Comparación histórica de la desigualdad de género en las carreras científicas entre países y disciplinas

Junming Huang, Alexander J. Gates, Roberta Sinatra, Albert-Laszlo Barabasi
(Enviado el 9 de julio de 2019)
PDF



Existe una amplia evidencia, aunque fragmentada, de diferencias de género en la academia, lo que sugiere que las mujeres están poco representadas en la mayoría de las disciplinas científicas, publican menos artículos a lo largo de una carrera y su trabajo adquiere menos citas. Aquí, ofrecemos una imagen completa de las discrepancias de género longitudinales en el rendimiento a través de un análisis bibliométrico de las carreras académicas mediante la reconstrucción de la historia completa de la publicación de más de 1,5 millones de autores con identidad de género cuya carrera editorial terminó entre 1955 y 2010, cubriendo 83 países y 13 disciplinas. Encontramos que, paradójicamente, el aumento de la participación de las mujeres en la ciencia en los últimos 60 años fue acompañado por un aumento de las diferencias de género tanto en la productividad como en el impacto. Sin embargo, lo más sorprendente es que descubrimos dos invariantes de género, al encontrar que hombres y mujeres publican a una tasa anual comparable y tienen un impacto equivalente en su carrera para el mismo tamaño de trabajo. Finalmente, demostramos que las diferencias en las tasas de deserción y la duración de la carrera explican una gran parte de las diferencias informadas en cuanto a la carrera en la productividad y el impacto. Este panorama integral de la desigualdad de género en el mundo académico puede ayudar a reformular la conversación sobre la sostenibilidad de las carreras de las mujeres en el mundo académico, con importantes consecuencias para las instituciones y los responsables de la formulación de políticas.





jueves, 2 de noviembre de 2017

Nueva versión de VOSviewer opera directamente con Crossref

Visualizando datos de citas disponibles de forma gratuita utilizando VOSviewer

Nees Jan van Eck, Ludo Waltman
CWTS

Hoy lanzamos la versión 1.6.6 de nuestro software VOSviewer para construir y visualizar redes bibliométricas. La nueva característica más importante en esta versión es el soporte para trabajar con datos Crossref. Recientemente, la Initiative for Open Citations (I4OC) logró convencer a un gran número de editoriales científicas para que las listas de referencias de publicaciones en sus revistas estuvieran disponibles gratuitamente a través de Crossref. Gracias a I4OC, Crossref se ha convertido en una valiosa fuente de datos para los usuarios de VOSviewer. En esta publicación de blog, discutimos cómo los usuarios de la nueva versión 1.6.6 de VOSviewer pueden beneficiarse de los datos de Crossref.

Uso de datos Crossref en VOSviewer


Hay dos formas en que VOSviewer admite el uso de datos Crossref:

  1. Un usuario de VOSviewer puede proporcionar un conjunto de DOI a VOSviewer. Usando la interfaz de programación de aplicaciones (API) de Crossref, VOSviewer descargará datos para las publicaciones correspondientes.
  2. Un usuario de VOSviewer puede trabajar directamente con la API de Crossref para descargar datos y luego puede proporcionar los datos descargados como entrada a VOSviewer.

El primer enfoque es el más fácil, ya que no requiere que los usuarios trabajen directamente con la API de Crossref. Cuando los usuarios ya tienen DOI de las publicaciones que les gustaría analizar (por ejemplo, publicaciones incluidas en el sistema de información de investigación de su universidad), recomendamos utilizar el primer enfoque. El segundo enfoque es un poco más complejo, pero tiene la ventaja de ofrecer mucha más flexibilidad. Ahora exploraremos el segundo enfoque con más detalle.

Descargando datos usando la API Crossref

Para demostrar el uso de la API Crossref, recopilamos datos sobre publicaciones en dos revistas cienométricas, Journal of Informetrics y Scientometrics, en el período 2007-2016. En cada llamada API, se pueden obtener datos para un máximo de 1000 publicaciones. Por lo tanto, necesitamos hacer múltiples llamadas a la API. Elegimos hacer llamadas por separado para cada una de las dos revistas.

El número de publicaciones en el Journal of Informetrics en el período 2007-2016 es inferior a 1000. Por lo tanto, los datos para el Journal of Informetrics se pueden obtener en una sola llamada API. Para realizar esta llamada API, ingresamos la siguiente URL en un navegador web:

http://api.crossref.org/works?filter=issn:1751-1577,from-pub-date:2007-01-01,until-pub-date:2016-12-31&rows=1000

La URL especifica una solicitud para la API Crossref. La solicitud API incluye el número ISSN de Journal of Informetrics (es decir, 1751-1577), así como la fecha de inicio y la fecha de finalización del período de tiempo que nos interesa. El parámetro rows en la solicitud API indica que nos gustaría para recibir datos de hasta 1000 publicaciones. Al ingresar la URL anterior en un navegador web, hacemos una llamada a la API de Crossref solicitando datos sobre todas las publicaciones en Journal of Informetrics en el período 2007-2016. Después de esperar un tiempo, el navegador web presentará el resultado de la llamada API. Guardamos este resultado en un archivo llamado JOI.json. Este es el llamado archivo JSON.

Seguimos el mismo enfoque para Scientometrics. Sin embargo, Scientometrics es una revista más grande y, por lo tanto, debemos realizar tres llamadas a la API, cada una de las cuales da como resultado datos para un máximo de 1000 publicaciones. Utilizamos las siguientes URL:

http://api.crossref.org/works?filter=issn:0138-9130,from-pub-date:2007-01-01,until-pub-date:2016-12-31&rows=1000

http://api.crossref.org/works?filter=issn:0138-9130,from-pub-date:2007-01-01,until-pub-date:2016-12-31&rows=1000&offset=1000

http://api.crossref.org/works?filter=issn:0138-9130,from-pub-date:2007-01-01,until-pub-date:2016-12-31&rows=1000&offset=2000

Las tres llamadas API son idénticas, excepto que en la segunda y la tercera llamada usamos el parámetro offset para especificar que queremos obtener datos para un segundo y un tercer lote de publicaciones. Guardamos los resultados de las llamadas API en tres archivos JSON.

Ahora hemos dado una demostración simple del uso de la API Crossref. La API Crossref ofrece muchas más opciones. Para más información, nos referimos a la documentación de la API.

Creando visualizaciones bibliométricas basadas en datos Crossref

Primero utilizamos los datos de Crossref descargados para visualizar una red de coautoría de investigadores en el campo de la cienciometría. En el asistente Crear mapa en VOSviewer, elegimos la opción Crear un mapa basado en datos bibliográficos. En el segundo paso del asistente, vamos a la pestaña Crossref JSON, donde seleccionamos los cuatro archivos JSON descargados. Después de elegir realizar un análisis de coautoría, simplemente usamos las elecciones predeterminadas en los pasos restantes del asistente. La visualización de la red de coautoría resultante se presenta a continuación.



A continuación, usamos nuestros datos Crossref para visualizar una red de publicaciones de acoplamiento bibliográfico en el campo de la cienciometría. Dos publicaciones tienen un enlace de acoplamiento bibliográfico si tienen una o más referencias en común. Nuevamente elegimos la opción Create a map based on bibliographic data en el asistente Create Map . Después de seleccionar nuestros cuatro archivos JSON, elegimos realizar un análisis de acoplamiento bibliográfico a nivel de documento. Utilizamos las opciones predeterminadas en los pasos restantes del asistente, lo que significa que nuestra red de acoplamiento bibliográfico incluye las 500 publicaciones con el mayor número de enlaces de acoplamiento bibliográfico. La visualización de la red se muestra a continuación.



El examen de la red de acoplamiento bibliográfico puede revelar algo inesperado. Las 500 publicaciones incluidas en la red de acoplamiento bibliográfico han aparecido todas en Scientometrics. La red no incluye publicaciones de Journal of Informetrics. Esto demuestra una importante limitación de los datos Crossref. Gracias a I4OC, muchos editores hoy en día hacen que las listas de referencias de publicaciones en sus revistas estén disponibles a través de Crossref. Sin embargo, algunos editores no (¿todavía?) Participan en I4OC. Este es también el caso de Elsevier, el editor de Journal of Informetrics. Debido a que las listas de referencias de publicaciones en Journal of Informetrics no están disponibles a través de Crossref, las publicaciones de esta revista no se pueden incluir en un análisis de acoplamiento bibliográfico basado en datos de Crossref.

Ejemplo a gran escala

Ahora hemos proporcionado ejemplos relativamente pequeños del uso de datos Crossref en VOSviewer. También es posible utilizar datos Crossref a una escala mucho mayor en VOSviewer, pero esto requiere un esfuerzo significativo en el preprocesamiento de los datos. Para ilustrar el uso a gran escala de datos Crossref, utilizamos los datos para visualizar una red de citas de 5000 revistas de todos los campos de la ciencia.

Usando la API Crossref, descargamos datos para todas las publicaciones en el período 1980-2016. La cantidad de datos era muy grande y, por lo tanto, era necesario preprocesar los datos para poder proporcionarlos como entrada a VOSviewer. Los datos se almacenaron en una base de datos relacional. Usando esta base de datos, identificamos todas las revistas (así como las actas de congresos y las series de libros) que tienen al menos 100 publicaciones para las cuales hay una lista de referencias disponible. Luego construimos la red de enlaces de citas entre las revistas identificadas. La dirección de un enlace de citas fue ignorada, por lo que no se hizo distinción entre una cita del diario A y el diario B y una cita del diario B del diario A. La red de citas del diario se guardó en un archivo de red VOSviewer y se utilizó este archivo como entrada para VOSviewer. En VOSviewer, se seleccionaron las 5000 revistas con el mayor número de enlaces de citas con otras revistas y se visualizó la red de citas de estas 5000 revistas. La visualización resultante se presenta a continuación. Se puede abrir una visualización interactiva en VOSviewer haciendo clic aquí.



La visualización muestra una estructura de la ciencia que es bien conocida a partir de visualizaciones bibliométricas a gran escala anteriores, que se basaron en datos de Web of Science o Scopus. Las revistas de matemática, informática e ingeniería se pueden encontrar en el centro del área inferior de la visualización. Las revistas de ciencias físicas se ubican en el área derecha de la visualización, mientras que las revistas de ciencias biológicas y de vida se encuentran en el área superior. Finalmente, las revistas de ciencias sociales se ubican en el área inferior izquierda de la visualización. Algunas revistas importantes faltan en la visualización. Estas revistas tienen un editor que no participa en I4OC y que no hace que las listas de referencias de publicaciones estén disponibles a través de Crossref.

Conclusión

Gracias a I4OC, Crossref se ha convertido en una fuente valiosa de datos de citas disponibles gratuitamente. Los datos de citas de Crossref se pueden utilizar para muchos propósitos, incluido el análisis y la visualización de redes de citas de revistas, investigadores y publicaciones individuales. La versión 1.6.6 de VOSviewer proporciona soporte directo para el uso de datos Crossref para visualizar redes de citas. Esperamos que esta nueva funcionalidad de VOSviewer ofrezca una demostración convincente del valor de los datos de citas disponibles gratuitamente. Alentamos a los editores que aún no participan en I4OC a unirse a la iniciativa y a que las listas de referencias de publicaciones en sus revistas estén disponibles de manera gratuita.

domingo, 6 de noviembre de 2016

Bibliometría: Índice H


Índice h
El índice h es un sistema propuesto por Jorge Hirsch, de la Universidad de California, para la medición de la calidad profesional de físicos y de otros científicos, en función de la cantidad de citas que han recibido sus artículos científicos. Un científico tiene índice h si ha publicado h trabajos con al menos h citas cada uno.



h-index de un gráfico de citas decrecientes de papers numerados.

Definición

El índice h se calcula con base en la distribución de las citas que han recibido los trabajos científicos de un investigador. Al respecto, Hirsch dice:

Un científico tiene índice h si el h de sus Np trabajos recibe al menos h citas cada uno, y los otros (Np - h) trabajos tienen como máximo h citas cada uno.1
Explicado de otro modo, si el factor h vale n, entonces n publicaciones han sido citadas más de n veces. Para hallarlo, basta ordenar los artículos de un autor o grupo por número de veces que han sido citados de mayor a menor, e ir recorriendo la lista hasta encontrar la última publicación cuyo número correlativo sea menor o igual que el número de citas: ese número correlativo es el factor h.

Así, el índice h es el balance entre el número de publicaciones y las citas a estas. El índice se diseñó para medir eficazmente la calidad del investigador, a diferencia de sistemas de medición más sencillos que cuentan citas o publicaciones, donde se hace una distinción entre aquellos investigadores que tienen una gran influencia en el mundo científico de aquellos que simplemente publican muchos trabajos. El índice funciona eficazmente solamente entre científicos del mismo campo, pues los mecanismos convencionales para citar los trabajos difieren entre cada uno de estos.

Hay programas en línea para calcular el índice h de un científico. También los índices h se pueden calcular manualmente, basándose en bases de datos accesibles en Internet, como Google Scholar, como una alternativa al tradicional factor de impacto de revistas a las que no se puede acceder libremente. Hirsch ha demostrado que h tiene importantes capacidades predictivas en relación con los honores que un científico pueda recibir o haya recibido, tales como el Premio Nobel. En física, un científico considerado productivo tiene un h por lo menos igual a la cantidad de años que lleva trabajando, mientras que en la ciencia biomédica estos valores son generalmente más altos.

Ciencias de la Computación Índice H significa 23, mediana 21
Psicología índice H significa 26, mediana 19
Enfermería Índice H media 20, mediana 18
Ciencias Sociales Índice H significa 19, mediana 16
Física / matemáticas H-índice media 23, mediana 22
Bio-medicina índice H significa 28, mediana 25



Ventajas

La principal desventaja de los viejos indicadores bibliométricos, tales como el número total de artículos o el número de citas es que en la primera medida no se aprecia la calidad de las publicaciones científicas, y la segunda se ve afectada desproporcionadamente por grupos que tienen pocas publicaciones y, sin embargo, un número grande de citas. El índice h pretende medir simultáneamente la calidad y la cantidad de la producción científica.

El índice h también puede calcularse como una función dependiente del tiempo, de dos modos distintos. Originalmente, Hirsch propuso que h dependía linealmente de los años que se llevara investigando. En este caso se podían comparar científicos de edades distintas. Otra posibilidad es calcular h usando artículos publicados dentro de un período específico, por ejemplo, en los últimos 10 años. De este modo se mide la productividad actual.

Críticas

No es muy difícil comprender que el índice h puede llevar a confusiones en cuanto a la importancia de un científico porque, al estar limitado por el número de publicaciones totales, un científico de corta carrera está en clara desventaja y no se considera la importancia de sus primeros trabajos en una medida correcta. Por ejemplo, el índice h de Évariste Galois es 2, y se quedará así por siempre, independientemente del impacto de su trabajo. Adicionalmente, algunas desventajas del factor de impacto se aplican a la vez al índice h. Por ejemplo, los artículos de revisión suelen tener mayor cantidad de citas que los artículos originales, así que un autor hipotético que solamente escribiera revisiones obtendría un índice h mayor que el de los científicos que aportan trabajos originales.

Finalmente, se ha observado que el índice h aminora drásticamente la importancia de trabajos singulares, dando valor a la productividad. En efecto, dos científicos pueden tener el mismo índice h (30, por ejemplo), siendo que uno de ellos escribió un trabajo con 200 citas y el otro no ha escrito ninguno con más de 30. Se han hecho varias propuestas para modificar este error evidente, pero ninguno se ha adoptado a nivel internacional.2 3