Este blog reúne material del curso de posgrado "Análisis de redes sociales" dictado en la Universidad Nacional del Sur (Argentina).
Mostrando entradas con la etiqueta evolución. Mostrar todas las entradas
Mostrando entradas con la etiqueta evolución. Mostrar todas las entradas
jueves, 9 de julio de 2020
"Co-evolución de una red científica" Alejandro Espinosa-Rada
Presentación titulada "Co-evoluciòn de una red científica: análisis multinivel de una disciplina a nivel nacional" realizada por Alejandro Espinosa-Rada, PhD© en Sociología, The Mitchell Centre for Social Network Analysis, The University of Manchester. En el marco de las Jornada de Redes 2020 – Red Hispanoamericana, realizado el 7 de Julio del 2020 de forma online.
martes, 3 de marzo de 2020
Cultura y redes sociales facilitan la evolución humana
UZH - Hunter-gatherer multilevel sociality accelerates cumulative cultural evolution from Rodolph Kastrup Schlaepfer on Vimeo.
Etiquetas:
algoritmo evolutivo,
análisis multinivel,
aprendizaje,
cultura,
evolución,
Filipinas,
recolección de datos,
simulación,
tribus
domingo, 24 de junio de 2018
Maravilloso trabajo de campo con redes sociales de tribus de cazadores-recolectores
Cazadores-recolectores de Hadza, redes sociales y modelos de cooperación
por Artem Kaznatcheev | Theory, Evolution and Games Groups
En el corazón de la región de los Grandes Lagos de África Oriental se encuentra Tanzania, una república compuesta por 30 mikoa o provincias. Su frontera está marcada por los lagos gigantes Victoria, Tanganyika y Malawi. Pero el lago que más me interesa es uno interno: a 200 km de la frontera con Kenia en el cruce de mikao Arusha, Manyara, Simiyu y Singed está el lago Eyasi. Es un lago temperamental que se puede secar casi por completo, que se puede cruzar a pie, en algunos años y en otros, como en los años de El Niño, inunda sus riberas lo suficiente como para atraer hipopótamos del Serengeti.
Para los Hadza, es su hogar.
El número de Hadza es de alrededor de mil personas, y alrededor de 300 viven como cazadores-recolectores nómadas tradicionales (Marlow, 2002; 2010). Un estilo de vida que se cree que es un modelo útil de sociedades en nuestra propia herencia evolutiva. Un modelo empírico de particular interés para la evolución de la cooperación. Pero un modelo que requiere mucho más esfuerzo para explorar que ejecutar algunas configuraciones de parámetros en su computadora. En el verano de 2010, Coren Apicella exploró este modelo viajando entre los campos de Hadza en toda la región del lago Eyasi para obtener información sobre su red social y su comportamiento cooperativo.
Aquí hay un video resumen donde Coren describe su trabajo:
Los datos que recopiló con sus colegas (Apicella et al., 2012) proporcionan nuestro mejor proxy para la organización social de los primeros humanos. En este post, quiero hablar sobre el Hadza, el conjunto de datos de su red social, y cómo puede informar a otros modelos de cooperación. En otras palabras, quiero freeride en Apicella et al. (2012) y me permito a mí mismo y a otros teóricos explorar modelos computacionales informados por el modelo empírico Hadza sin tener que caminar por el Lago Eyasi por nosotros mismos.
Los Hadza viven en pequeños campamentos temporales de unos 30 individuos, con un promedio de 11.7 \ pm 6.0 adultos por campamento para los 17 campamentos en Apicella et al. (2012). [1] Dentro de los campamentos de cazadores-recolectores, incluido el Hadza, hay un intercambio de alimentos en todo el campamento (Marlowe, 2004; Gurven, 2004), de la responsabilidad del cuidado infantil (Henry, et al., 2005; Crittenden & Marlowe, 2008; Hill & Hurtado, 2009), y de las tareas diarias como la adquisición de alimentos, la construcción y el mantenimiento de espacios habitables, y el transporte de niños y posesiones (Hill, 2002). En un metanálisis multicultural de 32 sociedades de alimentación actuales, incluyendo Hadza - Hill et al. (2011) mostraron que sus campamentos tienen bajos niveles de parentesco cercano (generalmente menos del 10%; en el Hadza específicamente varía en promedio del 4.1% para un macho focal al 5.5% para una hembra focal) y experimentan un flujo constante de individuos entre campamentos. Como destacó Coren en el video anterior, los campos de Hadza son muy dinámicos, se reubican cada 4 a 6 semanas y algunas veces se disuelven o se fusionan con otros campamentos.
Sin embargo, este flujo de individuos entre los campamentos no es aleatorio. Los individuos tienen preferencias para compañeros de campamento y Apicella et al. (2012) midieron estas preferencias pidiendo a cada adulto que nominara a algunas otras personas que preferirían tener como compañeros de campamento para su próximo campamento. [2] En este estudio, los hombres solo nominaron a otros hombres y mujeres como mujeres, lo que resultó en dos grafos disjuntos con un total de 205 individuos (nodos) y 1263 candidaturas futuras (enlaces dirigidos) y alrededor del 46% de los enlaces entre los campamentos. Apicella et al. (2012) presentaron estos grafos en la figura 1c (y las nominaciones dentro de los campamentos en la figura S4). Dado que un paso importante para trabajar con datos es tener esos datos, preferiblemente en un formato amigable para la máquina, me enfoqué en esta figura. Aunque conocí a Coren Apicella una vez, no me sentí cómodo al enviarle un correo electrónico con sus datos en bruto, especialmente porque no tenía un propósito específico en mente, así que Marcel Montrey y yo extrajimos la matriz de adyacencia de la figura 1c mano. [3]
Grafo de la futura preferencia de compañero de campamento de Hadza, basado en datos de Apicella et al. (2012) El grafo de la izquierda es de mujeres y el grafo de la derecha es de hombres. Los nodos se dimensionan en proporción a su grado.
Pero, ¿qué vamos a hacer con estos datos? El primer paso de Apicella et al. (2012) fue comparar con otras redes o modelos de redes que a menudo discutimos. En comparación con una red aleatoria con el mismo número de enlaces y nodos, encontraron:
- que la distribución de grados tiene colas significativamente más gordas,
- diferencias en su grado de reciprocidad, con un Hadza siendo 37.6 a 51.4 veces más propenso a nombrar como compañero de campamento deseado a alguien que los haya nombrado como un compañero de campamento deseado,
- asociatividad más alta de lo esperado entre el grado de ingreso y el de salida: los agentes que nombran más agentes también tienen más probabilidades de ser nombrados más ellos mismos.
- homofilia en rasgos como edad, altura, peso, grasa corporal, fuerza de agarre y nivel de contribución en un juego de bienes públicos. [4]
Para las comparaciones empíricas, consideraron 142 redes socioeconómicas de estudiantes estadounidenses del Estudio Longitudinal Nacional de Salud del Adolescente (para el diseño, ver: Harris et al., 2009), y dos redes de tamaño similar (N = 181, N = 251) de adultos Aldeanos agricultores de subsistencia en Honduras que fueron compartidos con ellos por Derek K. Stafford (de próxima publicación, también, ver Stafford et al., 2010). Aunque estas redes de comparación usaron diferentes preguntas (más o menos: "¿quiénes son tus amigos?") Para generar sus enlaces dirigidos, los parámetros de la red Hadza cayeron dentro de los rangos observados en estas redes de comparación. Pero eso nos interesa solo si esperamos que estos parámetros sean relevantes y determinantes para el tipo de preguntas que queremos formular. No siempre es claro para mí que este sea el caso.
Mi impulso de tener datos de redes sociales sobre cazadores-recolectores proviene de la aparente importancia y omnipresencia del estudio de la estructura espacial en los modelos matemáticos de la teoría de juegos evolutiva. La idea es eliminar al intermediario modelador de redes. En lugar de tratar de descubrir qué tipo de red son las familias como redes reales, y luego ejecutar juegos en esas familias, ¿por qué no ejecutar juegos directamente en redes observadas empíricamente? Lamentablemente, existe una tensión entre el tipo de redes que recolectan los antropólogos y los sociólogos, y el tipo de redes que modelan los teóricos de los juegos evolutivos. El enfoque típico de las redes en EGT es hacer que los enlaces del grafo determinen los pares de agentes que interactúan durante el juego y para la reproducción o la imitación. [5] Dado que generalmente consideramos juegos simétricos, generalmente también queremos grafos simétricos. [6] Entonces, un enfoque obvio es simétrizar la red Hadza diciendo que los agentes interactuarán simétricamente si cualquiera inicia, y que el "futuro compañero" es un sustituto de un amigo y la amistad es un sustituto de la interacción frecuente. Esto facilita la integración de la red Hadza en los modelos existentes, pero descarta nuestro conocimiento de cómo los Hadza realmente interactúan entre sí; que se encuentra principalmente en el nivel de un campamento.
En cambio, podríamos estructurar modelos usando los datos de Coren en términos de campamentos, y tener interacciones invisibles dentro de cada campamento. Desafortunadamente, si se permite que los campamentos crezcan o sobrevivan en proporción al rendimiento total (o promedio) de los campamentos, independientemente de las interacciones que elija para modelar, entonces habremos creado una selección de grupos en nuestros modelos. Si, en cambio, mantenemos fijos los campamentos, con migración única (sin pago) entre los campamentos, entonces estamos en un entorno similar a la teoría de conjuntos evolutivos de Tarnita et al. (2009). Este enfoque también puede promover la cooperación, pero de una manera más sutil que la selección directa en grupos. Luego, podemos usar el grafo de las nominaciones de compañeros de campamento futuros de campo cruzado de la figura suplementaria S4 como un grafo de migración. Imagine una dinámica en la que en cada paso del tiempo, se selecciona un ego al azar [7] y se le da la oportunidad de migrar al campamento, potencialmente el mismo campamento en el que ya están, de uno de los alteros que el ego nominó como preferida compañera de campamento futura. Además, periódicamente podemos disolver y luego reformar las redes de compañeros de campamento de acuerdo con las preferencias que Coren recopiló. Una manera podría ser (1) seleccionar egos al azar, (2) crear un nuevo campamento para ellos si aún no son parte de un campamento, y (3) dejarlos invitar a quienes deseen tener como compañeros de campamento a su campamento . Esto reflejaría que, aunque la migración o las visitas son muy comunes, los campamentos completos se mueven entre 6 y 12 veces al año; el número y tamaño de los campamentos también fluctúa a lo largo de la temporada, con menos campamentos más grandes formados durante la última estación seca y la estación húmeda cuando las bayas son comunes (Marlowe, 2002; 2010). Este enfoque nos permite usar la red social de Coren no como el grafo de interacción (y / o reproducción / imitación), sino como una meta-red que informa cómo actualizamos el grafo de interacción.
Los enfoques de los últimos dos párrafos difieren en la medida en que debe alejarse del conocimiento del dominio sobre los datos empíricos que se recopilaron y cuánto tiene que ajustar las herramientas de modelado existentes. El primero se integró mejor con el trabajo teórico sobre EGT, y el segundo con el trabajo empírico en antropología. Al final, la cantidad que ajuste sus herramientas o cuán lejos se aleja de los datos es una elección similar a encontrar su combinación preferida de herramienta-problema. Puedo verme a mí mismo utilizando la red simétrica como telón de fondo para proyectos existentes como la evolución de delirios útiles (Kaznatcheev, et al., 2014) y extendiendo la teoría de conjuntos evolutiva como base para un modelo más cercano al modelo empírico de Hadza. Te mantendré actualizado sobre ambos, querido lector.
Notas y referencias
- Aquí parece haber una variación significativa entre años o estaciones. Los datos utilizados por Hill et al. (2011), por ejemplo, informó 17 campamentos con un total de 406 adultos, por lo que alrededor de 23.9 adultos por campamento. No estoy seguro de qué hacer, si es que hay algo que hacer.
- Apicella et al. (2012) también construyó una red de regalos pidiendo a las personas que elijan recipientes para un total de 3 barras de miel. Los palos no se podían guardar, pero podría elegir enviar más de uno de sus palos a la misma persona, lo que da como resultado un gráfico dirigido ponderado. Muchas de las propiedades generales que analizo más adelante para la red campmate también fueron válidas para esta, pero la red en sí misma no se presentó explícitamente en el documento (o los materiales complementarios). Como no pude trabajar con él directamente, no lo discutí más en esta publicación.
- La representación abarrotada en la figura 1c y los errores en la transcripción introducen cierta discrepancia entre los números informados en Apicella et al. (2012) y los gráficos que recuperamos. En particular, nuestros gráficos tienen un total de 94 hombres y 97 mujeres, y 340 y 506 bordes en los gráficos masculino y femenino, respectivamente. Se trata de 14 personas y 417 candidaturas menos que las 205 personas y 1263 nominaciones que los autores informan. Por lo tanto, no use nuestro conteo como un conjunto de datos autorizado. Para mis propios fines, le pediré a Coren los datos brutos reales si encuentro una pregunta que creo que el modelado computacional puede responder.
- Mientras visitaba los campamentos, Coren contrató al Hadza en un juego de bienes públicos. Aunque los investigadores le han pedido al Hadza que juegue varios juegos económicos antes, generalmente el juego del ultimátum o dictador (por ejemplo, ver Henrich et al., 2001), esta era la primera vez que jugaban en el juego de bienes públicos. Las recompensas fueron en la miel, su comida más preferida (Marlowe y Berbesque, 2009), y se midió en barritas. Cada participante fue dotado con 4 palos de miel, y todos los que donaron para el bien público se multiplicaron por un factor de 3 y, después de que todos los compañeros de campamento adultos tomaran sus decisiones de contribución en privado, se distribuyeron entre todos los adultos en el campamento. Todos los campamentos tenían más de 4 residentes adultos.
- Por supuesto, también podemos seguir a Ohtsuki et al. (2007) y usa diferentes gráficos de interacción y reemplazo. Es más fácil justificar la red Hadza como un reemplazo por una red de imitación, diciendo que los bordes son vínculos de amistad; y usar la interacción de inviscid a nivel de campamento como lo analizo en el próximo párrafo. Por supuesto, si se adapta el enfoque completo de meta-red del siguiente párrafo, entonces la red Hadza se usa para actualizar los campamentos, pero la interacción y las redes de imitación pueden ser establecidas por la propia estructura del campamento invisible.
- Alternativamente, uno puede abrazar los bordes dirigidos modificando los modelos de la teoría del juego evolutivo y concentrándose en juegos no simétricos como el ultimátum o el dictador. Esto se conectaría con una gran literatura de economía conductual y antropología (como Henrich et al., 2001) y algunos estudios de modelado (como Nowak et al., 2000).
- Seleccionar egos al azar independientemente de su aptitud o estrategia es una simplificación potencialmente irracional. Cuando un Hadza deja su campamento, por alguna razón es como una disputa o escasez de recursos que puede estar estrechamente vinculada a la recompensa o estrategia de uno en las interacciones cooperativas. Afortunadamente, este tipo de estrategias de migración condicional ya están siendo exploradas por investigadores como C. Athena Aktipis (2004).
Aktipis, C.A. (2004). Know when to walk away: contingent movement and the evolution of cooperation. Journal of Theoretical Biology, 231(2): 249-260.
Apicella, C.L., Marlowe, F.W., Fowler, J.H., & Christakis, N.A. (2012). Social networks and cooperation in hunter-gatherers. Nature, 481 (7382), 497-501 PMID: 22281599
Crittenden, A. N., & Marlowe, F. W. (2008). Allomaternal care among the Hadza of Tanzania. Human Nature, 19(3): 249-262.
Gurven, M. (2004). To give and to give not: the behavioral ecology of human food transfers. Behavioral and Brain Sciences, 27(04), 543-559.
Harris, K.M., C.T. Halpern, E. Whitsel, J. Hussey, J. Tabor, P. Entzel, & Udry, J.R. (2009) The National Longitudinal Study of Adolescent to Adult Health: Research Design. [online].
Kaznatcheev, A., Montrey, M., & Shultz, T.R. (2014). Evolving useful delusions: Subjectively rational selfishness leads to objectively irrational cooperation. Proceedings of the 36th annual conference of the cognitive science society. arXiv: 1405.0041v1.
Marlowe, F. (2002). Why the Hadza are still hunter-gatherers. Ethnicity, huntergatherers, and the ‘Other’, ed. S. Kent, 247-81.
Marlowe, F.W. (2004). What explains Hadza food sharing? Research in Economic Anthropology, 23: 69-88.
Marlowe, F. W., & Berbesque, J. C. (2009). Tubers as fallback foods and their impact on Hadza hunter‐gatherers. American Journal of Physical Anthropology, 140(4): 751-758.
Marlowe, F.W. (2010). The Hadza: hunter-gatherers of Tanzania (Vol. 3). Univ. of California Press.
Nowak, M. A., Page, K. M., & Sigmund, K. (2000). Fairness versus reason in the ultimatum game. Science, 289(5485): 1773-1775.
Ohtsuki, H., Pacheco, J. M., & Nowak, M. A. (2007). Evolutionary graph theory: breaking the symmetry between interaction and replacement. Journal of Theoretical Biology, 246(4): 681-694.
Hill, K. (2002). Altruistic cooperation during foraging by the Ache, and the evolved human predisposition to cooperate. Human Nature, 13(1): 105-128.
Hill, K., & Hurtado, A. M. (2009). Cooperative breeding in South American hunter–gatherers. Proceedings of the Royal Society of London B: Biological Sciences, rspb20091061.
domingo, 10 de mayo de 2015
Un simulación para encontrar una pareja sin ninguna capacidad de sociabilidad
Un simulador de evolución revela el secreto de apareamiento sin habilidades sociales
Sin las habilidades sociales, la única manera de conocer a un compañero es por casualidad completa. ¿Verdad? No, de acuerdo a un nuevo modelo que simula la forma en genes de un individuo pueden interactuar con el medio ambiente.
Encontrar una pareja sexual es un asunto complejo para los seres humanos. En su forma más simple, requiere dos participantes dispuestos a estar presentes en el mismo lugar al mismo tiempo. Y como era de esperar, los humanos han desarrollado sofisticadas habilidades sociales para coordinar sus movimientos para este propósito (como lo han hecho muchos organismos).
Pero ¿y si los participantes no tienen las habilidades sociales y por lo tanto son incapaces de coordinar de esta manera? ¿Cómo participantes que carecen de habilidades sociales se aparean alguna vez? Esa es una pregunta importante, y no sólo para los seres humanos con habilidades sociales pobres. De hecho, muchos organismos simples se reproducen sexualmente, pero no parecen tener las habilidades sociales para coordinar sus movimientos.
Este enigma se llama el problema de la coordinación social y sociólogos han desconcertado de largo sobre cómo las especies socialmente cuestionadas de sobrevivir.
Hoy tenemos una respuesta gracias a la obra de Chris Marriott de la Universidad de Washington en Seattle y Jobran Chebib en la Universidad de Zúrich, en Suiza. Estos chicos han creado un modelo informático que simula la interacción entre los organismos, sus genes y el medio ambiente en el que existen.
Este modelo muestra cómo las personas sin habilidades sociales todavía pueden aparearse con éxito y ofrece una visión única de la forma en habilidades sociales con el tiempo pueden evolucionar en este tipo de poblaciones.
Una parte clave del nuevo modelo es su capacidad para simular la interacción entre la composición genética de una población de individuos y su entorno. Y lo hace de una manera inteligente.
En el nuevo modelo, el "medio ambiente" consiste en una red de nodos conectados al azar. Un individuo puede explorar este mundo al saltar de un nodo a otro utilizando los enlaces entre ellos.
Las personas que aumentan la energía en cada nodo, pero lo utilizan a medida que se mueven. La ganancia o pérdida de energía neta cada día determina si la criatura vive o muere.
Al mismo tiempo, una persona con suficiente energía puede disfrutar de relaciones sexuales con otra criatura que pasa a estar en el mismo lugar, siempre que éste también tenga la energía suficiente. Esto da como resultado el nacimiento de una nueva criatura con características de ambos padres. Las personas que no tienen relaciones sexuales también pueden reproducirse asexualmente.
La forma en que más individuos eligen sus rutas es importante. Cada criatura hace esto usando la información codificada en su "genoma": una larga secuencia de rutas posibles a través del entorno de un lugar a otro.
En una ubicación específica, el individuo busca en su genoma para las rutas asociadas con esa posición. A continuación, elige la ruta que maximice sus futuros recursos, y esto determina dónde se mueve al lado.
Esto tiene consecuencias importantes para una población emergente. Marriott y Chebib empiezan por la liberación de un solo individuo en este entorno. Es obvio que no puede tener relaciones sexuales y así se reproduce asexualmente, produciendo otra persona con el mismo genoma.
Dado que ambos individuos tienen el mismo genoma, se mueven a través del entorno de la misma manera, la producción de otros individuos con el mismo genoma o tener relaciones sexuales para producir individuos con genomas similares.
Después de muchas generaciones, el resultado es un grupo de individuos con genomas similares que se mueven a través del entorno de la misma manera. En otras palabras, una manada.
Esto lleva a un patrón de cría llamado cruzamiento, donde los individuos se aparean con otros similares en lugar de socios aleatorios. Eso es una simple consecuencia de ser parte de una manada con patrones de comportamiento similares.
Las personas también tienden a regresar a sus lugares de nacimiento, ya que esta información se codifica automáticamente en sus genomas. Así es como surge filopatría natal.
Todo esto está en marcado contraste con las poblaciones de individuos con diferentes genomas que se dejan caer en el medio ambiente de forma aleatoria. Estos individuos tienden a morir, ya que sólo se reúnen otros individuos por completo oportunidad. Así que la reproducción sexual es rara.
Y cuando ocurre, tiende a crear individuos con genomas similares que terminan produciendo rebaños y disfrutando de apareamiento selectivo y filopatría natal exactamente de la misma manera que las menos diversas poblaciones.
Lo extraordinario es que todos estos comportamientos emergen de la interacción entre la genética de los individuos y su entorno. No hay habilidades sociales involucrados en absoluto.
"Encontramos tres tipos de organización social que ayuda a resolver este problema social de coordinación (pastoreo, apareamiento selectivo y filopatría natal) emergen en poblaciones de agentes simulados sin mecanismos sociales disponibles para apoyar a estas organizaciones", dicen Marriott y Chebib.
Eso es fascinante trabajo y no sólo porque muestra cómo se puede producir el apareamiento entre individuos sin habilidades sociales. Marriott y Chebib especulan que la aparición de estas conductas de apareamiento proporciona un entorno en el que las habilidades de coordinación social, con el tiempo pueden evolucionar. "Llegamos a la conclusión de que los orígenes no sociales de estas organizaciones sociales en torno a la reproducción sexual pueden proporcionar el medio ambiente para el desarrollo de soluciones sociales a los mismos y diferentes problemas", dicen.
Muchas criaturas aprenden habilidades sociales de otros individuos o están bajo la presión social de un tipo u otro a comportarse de una manera específica. Pero nadie ha sido nunca seguro de cómo han surgido debido a la naturaleza de pollo y el huevo del problema de estas habilidades: no se puede aprender las habilidades sociales a menos que seas parte de un grupo, y no puede ser parte de un grupo a menos que tenga las habilidades sociales.
Marriott y Chebib han encontrado un camino a través de esta paradoja sobre la base de la relación entre los genes y el medio ambiente. ¿El siguiente paso? Ver si las habilidades de coordinación en redes sociales evolucionan en las poblaciones que reproducen. ¡Estaremos observando!
Ref: arxiv.org/abs/1504.06781 : Finding a Mate With No Social Skills
Sin las habilidades sociales, la única manera de conocer a un compañero es por casualidad completa. ¿Verdad? No, de acuerdo a un nuevo modelo que simula la forma en genes de un individuo pueden interactuar con el medio ambiente.
Encontrar una pareja sexual es un asunto complejo para los seres humanos. En su forma más simple, requiere dos participantes dispuestos a estar presentes en el mismo lugar al mismo tiempo. Y como era de esperar, los humanos han desarrollado sofisticadas habilidades sociales para coordinar sus movimientos para este propósito (como lo han hecho muchos organismos).
Pero ¿y si los participantes no tienen las habilidades sociales y por lo tanto son incapaces de coordinar de esta manera? ¿Cómo participantes que carecen de habilidades sociales se aparean alguna vez? Esa es una pregunta importante, y no sólo para los seres humanos con habilidades sociales pobres. De hecho, muchos organismos simples se reproducen sexualmente, pero no parecen tener las habilidades sociales para coordinar sus movimientos.
Este enigma se llama el problema de la coordinación social y sociólogos han desconcertado de largo sobre cómo las especies socialmente cuestionadas de sobrevivir.
Hoy tenemos una respuesta gracias a la obra de Chris Marriott de la Universidad de Washington en Seattle y Jobran Chebib en la Universidad de Zúrich, en Suiza. Estos chicos han creado un modelo informático que simula la interacción entre los organismos, sus genes y el medio ambiente en el que existen.
Este modelo muestra cómo las personas sin habilidades sociales todavía pueden aparearse con éxito y ofrece una visión única de la forma en habilidades sociales con el tiempo pueden evolucionar en este tipo de poblaciones.
Una parte clave del nuevo modelo es su capacidad para simular la interacción entre la composición genética de una población de individuos y su entorno. Y lo hace de una manera inteligente.
En el nuevo modelo, el "medio ambiente" consiste en una red de nodos conectados al azar. Un individuo puede explorar este mundo al saltar de un nodo a otro utilizando los enlaces entre ellos.
Las personas que aumentan la energía en cada nodo, pero lo utilizan a medida que se mueven. La ganancia o pérdida de energía neta cada día determina si la criatura vive o muere.
Al mismo tiempo, una persona con suficiente energía puede disfrutar de relaciones sexuales con otra criatura que pasa a estar en el mismo lugar, siempre que éste también tenga la energía suficiente. Esto da como resultado el nacimiento de una nueva criatura con características de ambos padres. Las personas que no tienen relaciones sexuales también pueden reproducirse asexualmente.
La forma en que más individuos eligen sus rutas es importante. Cada criatura hace esto usando la información codificada en su "genoma": una larga secuencia de rutas posibles a través del entorno de un lugar a otro.
En una ubicación específica, el individuo busca en su genoma para las rutas asociadas con esa posición. A continuación, elige la ruta que maximice sus futuros recursos, y esto determina dónde se mueve al lado.
Esto tiene consecuencias importantes para una población emergente. Marriott y Chebib empiezan por la liberación de un solo individuo en este entorno. Es obvio que no puede tener relaciones sexuales y así se reproduce asexualmente, produciendo otra persona con el mismo genoma.
Dado que ambos individuos tienen el mismo genoma, se mueven a través del entorno de la misma manera, la producción de otros individuos con el mismo genoma o tener relaciones sexuales para producir individuos con genomas similares.
Después de muchas generaciones, el resultado es un grupo de individuos con genomas similares que se mueven a través del entorno de la misma manera. En otras palabras, una manada.
Esto lleva a un patrón de cría llamado cruzamiento, donde los individuos se aparean con otros similares en lugar de socios aleatorios. Eso es una simple consecuencia de ser parte de una manada con patrones de comportamiento similares.
Las personas también tienden a regresar a sus lugares de nacimiento, ya que esta información se codifica automáticamente en sus genomas. Así es como surge filopatría natal.
Todo esto está en marcado contraste con las poblaciones de individuos con diferentes genomas que se dejan caer en el medio ambiente de forma aleatoria. Estos individuos tienden a morir, ya que sólo se reúnen otros individuos por completo oportunidad. Así que la reproducción sexual es rara.
Y cuando ocurre, tiende a crear individuos con genomas similares que terminan produciendo rebaños y disfrutando de apareamiento selectivo y filopatría natal exactamente de la misma manera que las menos diversas poblaciones.
Lo extraordinario es que todos estos comportamientos emergen de la interacción entre la genética de los individuos y su entorno. No hay habilidades sociales involucrados en absoluto.
"Encontramos tres tipos de organización social que ayuda a resolver este problema social de coordinación (pastoreo, apareamiento selectivo y filopatría natal) emergen en poblaciones de agentes simulados sin mecanismos sociales disponibles para apoyar a estas organizaciones", dicen Marriott y Chebib.
Eso es fascinante trabajo y no sólo porque muestra cómo se puede producir el apareamiento entre individuos sin habilidades sociales. Marriott y Chebib especulan que la aparición de estas conductas de apareamiento proporciona un entorno en el que las habilidades de coordinación social, con el tiempo pueden evolucionar. "Llegamos a la conclusión de que los orígenes no sociales de estas organizaciones sociales en torno a la reproducción sexual pueden proporcionar el medio ambiente para el desarrollo de soluciones sociales a los mismos y diferentes problemas", dicen.
Muchas criaturas aprenden habilidades sociales de otros individuos o están bajo la presión social de un tipo u otro a comportarse de una manera específica. Pero nadie ha sido nunca seguro de cómo han surgido debido a la naturaleza de pollo y el huevo del problema de estas habilidades: no se puede aprender las habilidades sociales a menos que seas parte de un grupo, y no puede ser parte de un grupo a menos que tenga las habilidades sociales.
Marriott y Chebib han encontrado un camino a través de esta paradoja sobre la base de la relación entre los genes y el medio ambiente. ¿El siguiente paso? Ver si las habilidades de coordinación en redes sociales evolucionan en las poblaciones que reproducen. ¡Estaremos observando!
Ref: arxiv.org/abs/1504.06781 : Finding a Mate With No Social Skills
Suscribirse a:
Entradas (Atom)