Mostrando entradas con la etiqueta contagio. Mostrar todas las entradas
Mostrando entradas con la etiqueta contagio. Mostrar todas las entradas

miércoles, 23 de septiembre de 2020

Las matemáticas de la segunda oleada del COVID

¿Cuándo termina una segunda oleada de COVID? Mira las matemáticas

por la Universidad de Sydney || Phys.org




Se suavizaron las series de tiempo y se identificaron puntos de inflexión para Georgia y Ohio. A través de la identificación de puntos de inflexión "verdaderos", se determina que Georgia se encuentra en su primera ola, mientras que Ohio se determina que está en su segunda ola. Ambos estados exhiben su mayor número de casos (hasta el suavizado) en el último día de análisis. Los recuentos diarios exactos varían según la fuente y la fecha en que se accedió a los datos. Crédito: Nick James y Max Menzies


Los matemáticos han desarrollado un marco para determinar cuándo las regiones entran y salen de los períodos de aumento de la infección por COVID-19, lo que proporciona una herramienta útil para que los formuladores de políticas de salud pública ayuden a controlar la pandemia de coronavirus.

El primer artículo publicado sobre el segundo aumento de las infecciones por COVID-19 en los estados de EE. UU. Sugiere que los responsables de la formulación de políticas deberían buscar puntos de inflexión demostrables en los datos en lugar de tasas de infección estables o que no disminuyen lo suficiente antes de levantar las restricciones.

Los matemáticos Nick James y Max Menzies han publicado lo que creen que es el primer análisis de las tasas de infección por COVID-19 en los estados de EE. UU. Para identificar puntos de inflexión en los datos que indican cuándo comenzaron o terminaron las oleadas.

El nuevo estudio de los matemáticos australianos se publica hoy en la revista Chaos, publicada por el Instituto Americano de Física.

"En algunos de los estados con peor desempeño, parece que los legisladores han buscado tasas de infección que se estabilicen o disminuyan levemente. En cambio, los funcionarios de salud deben buscar máximos y mínimos locales identificables, que muestren cuándo los aumentos repentinos alcanzan su punto máximo y cuándo han terminado de manera demostrable". dijo Nick James un Ph.D. estudiante de la Escuela de Matemáticas y Estadística de la Universidad de Sydney.

En el estudio, los dos matemáticos informan un método para analizar los números de casos de COVID-19 en busca de evidencia de una primera o segunda ola. Los autores estudiaron datos de los 50 estados de EE. UU. Más el Distrito de Columbia durante el período de siete meses del 21 de enero al 31 de julio de 2020. Encontraron que 31 estados y el Distrito de Columbia estaban experimentando una segunda ola a fines de julio.

Los dos matemáticos también han aplicado el método para analizar las tasas de infección en ocho estados y territorios australianos utilizando datos de COVIDlive.com.au. Si bien el análisis australiano no ha sido revisado por pares, sí aplica la metodología revisada por pares. El análisis identificó claramente a Victoria como un valor atípico, como se esperaba.




Esta figura agrupa los estados según la similitud en sus puntos de inflexión en las trayectorias de nuevos casos. Se identifican cinco (sub) grupos primarios de series de tiempo con los siguientes comportamientos: los 31 estados principales más D.C. están más allá de su primera ola y ahora están experimentando una segunda ola. Los 13 estados en la parte inferior todavía están en su primera ola. Los últimos seis estados en el medio del diagrama han aplanado la curva después de una ola (Nueva York y Nueva Jersey), están saliendo de la primera ola (Utah y Arizona) o han completado completamente su segunda ola (Vermont y Maine). Crédito: Nick James y Max Menzies
 

"Lo que muestran los datos de Victoria es que los casos aún están disminuyendo y el punto de inflexión, el mínimo local, aún no ha ocurrido", dijo el Dr. Menzies. Dijo que, al menos desde una perspectiva matemática, Victoria debería "mantener el rumbo".

El Dr. Menzies, del Centro de Ciencias Matemáticas Yau de la Universidad de Tsinghua en Beijing, dijo: "Nuestro enfoque permite una identificación cuidadosa de los estados de EE. UU. Con mayor y menor éxito en la gestión de COVID-19".

Los resultados muestran que Nueva York y Nueva Jersey aplanaron por completo sus curvas de infección a fines de julio con un solo aumento. Trece estados, incluidos Georgia, California y Texas, tienen un aumento continuo y creciente de infecciones únicas. Treinta y un estados tuvieron un aumento inicial seguido de una disminución de la infección y un segundo aumento. Estos estados incluyen Florida y Ohio.

El Sr. James dijo: "Este no es un modelo predictivo. Es una herramienta analítica que debería ayudar a los legisladores a determinar puntos de inflexión demostrables en las infecciones por COVID".

Metodología

El método suaviza los datos de recuento de casos diarios sin procesar para eliminar los recuentos bajos artificiales durante los fines de semana e incluso algunos números negativos que ocurren cuando las localidades corrigen errores. Después de suavizar los datos, se utiliza una técnica numérica para encontrar picos y valles. A partir de esto, se pueden identificar puntos de inflexión.

El Dr. Menzies dijo que su análisis muestra que los gobiernos deberían intentar no permitir que aumenten los casos nuevos ni reducir las restricciones cuando el número de casos simplemente se ha estabilizado.

Series de tiempo suavizadas y puntos de inflexión identificados para varios estados: (a) Mississippi (b) Georgia (c) California (d) Texas y (e) Carolina del Norte se les asigna una secuencia valle-pico y se determina que está en su primer aumento. (f) Florida (g) Pensilvania y (h) Ohio se determina que están en sus segundas oleadas, con una secuencia valle-pico-valle-pico. (i) Nueva York y (j) Nueva Jersey se les asigna la secuencia valle-pico-valle y se determina que han concluido su primer aumento y aplanado la curva. (k) Arizona y (l) Maine se asignan valle-valle valle y valle-pico-valle-pico-valle con el valle final al final del período y se determina que están disminuyendo desde su primera y segunda oleadas, respectivamente. Crédito: Max Menzies y Nick James

"Un verdadero punto de inflexión, donde los nuevos casos están legítimamente en recesión y no solo exhiben fluctuaciones estables, debe observarse antes de relajar cualquier restricción".

Dijo que el análisis no era solo una buena matemática, utilizando una nueva medida entre conjuntos de puntos de inflexión, el estudio también se ocupa de un problema de gran actualidad: observar datos estado por estado.

James dijo que empujar agresivamente las tasas de infección al mínimo parecía la mejor manera de derrotar un segundo aumento.

Picos y valles

Para determinar los picos y valles, el algoritmo desarrollado por los matemáticos determina que se produce un punto de inflexión cuando una curva descendente sube o una curva ascendente gira hacia abajo. Sólo se cuentan aquellas secuencias en las que las amplitudes pico y valle difieren en una cantidad mínima definida. Las fluctuaciones pueden ocurrir cuando una curva se aplana por un tiempo pero continúa aumentando sin pasar por una verdadera recesión, por lo que el método elimina estos recuentos falsos.

Ambos de Australia, los dos matemáticos han sido mejores amigos durante 25 años. "Pero este año es la primera vez que trabajamos juntos en problemas", dijo James.

El Sr. James tiene experiencia en estadísticas y ha trabajado para empresas emergentes y fondos de cobertura en Texas, Sydney, San Francisco y la ciudad de Nueva York. El Dr. Menzies es un matemático puro, completando su Ph.D. en Harvard en 2019 y su licenciatura en matemáticas en la Universidad de Cambridge.

martes, 14 de julio de 2020

La difícil matemática de la inmunización colectiva

La matemática difícil de la inmunidad colectiva para Covid-19

¿Cuándo dejará de propagarse una enfermedad a una población? La fórmula es simple, pero las variables son mucho más complicadas.
Wired



No es fácil determinar cuándo una enfermedad dejará de propagarse a través de la población. Ilustración: Olena Shmahalo / Quanta Magazine



Si bien muchas cosas sobre la pandemia de Covid-19 siguen siendo inciertas, sabemos cómo es probable que termine: cuando la propagación del virus comienza a disminuir (y finalmente cesa por completo) porque suficientes personas han desarrollado inmunidad al virus. En ese momento, ya sea provocado por una vacuna o por personas que contraen la enfermedad, la población ha desarrollado "inmunidad colectiva".


"Una vez que el nivel de inmunidad pasa un cierto umbral, la epidemia comenzará a desaparecer, porque no hay suficientes personas nuevas para infectar", dijo Natalie Dean de la Universidad de Florida.

Si bien determinar ese umbral para Covid-19 es crítico, hay muchos matices involucrados en el cálculo de la cantidad exacta de la población que debe ser inmune para que la inmunidad de rebaño surta efecto y proteja a las personas que no son inmunes.

Al principio parece bastante simple. Lo único que necesita saber es cuántas personas, en promedio, están infectadas por cada persona infectada. Este valor se llama R0 (se pronuncia "R nada"). Una vez que tenga eso, puede conectarlo a una fórmula simple para calcular el umbral de inmunidad del rebaño: 1 - 1 / R0.

Supongamos que el R0 para Covid-19 es 2.5, lo que significa que cada persona infectada infecta, en promedio, a otras dos personas y media (una estimación común). En ese caso, el umbral de inmunidad del rebaño para Covid-19 es 0.6, o 60 por ciento. Eso significa que el virus se propagará a un ritmo acelerado hasta que, en promedio, en diferentes lugares, el 60 por ciento de la población se vuelva inmune.


En ese punto, el virus aún se propagará, pero a un ritmo de desaceleración, hasta que se detenga por completo. Del mismo modo que un automóvil no se detiene en el momento en que quita el pie del acelerador, el virus no desaparecerá en el momento en que se alcance la inmunidad del rebaño.
“Se podría imaginar que una vez que el 60 por ciento de la población está infectada, la cantidad de infecciones comienza a disminuir. Pero podría ser otro 20 por ciento el que se infecta mientras la enfermedad comienza a desaparecer ”, dijo Joel Miller, de la Universidad La Trobe en Australia.

Ese 60 por ciento es también el umbral más allá del cual las nuevas introducciones del virus —por ejemplo, un pasajero infectado que desembarca de un crucero en un puerto saludable con inmunidad de rebaño— se agotará rápidamente.



"No significa que no puedas iniciar un incendio, pero ese brote va a morir", dijo Kate Langwig, del Instituto Politécnico de Virginia y la Universidad Estatal.

Sin embargo, las cosas se complican rápidamente. El umbral de inmunidad del rebaño depende de cuántas personas infecta cada persona infectada, un número que puede variar según la ubicación. La persona infectada promedio en un edificio de apartamentos puede infectar a muchas más personas que la persona infectada promedio en un entorno rural. Entonces, si bien un R0 de 2.5 para Covid-19 puede ser un número razonable para todo el mundo, casi seguramente variará considerablemente en un nivel más local, promediando mucho más en algunos lugares y más bajo en otros. Esto significa que el umbral de inmunidad del rebaño también será superior al 60 por ciento en algunos lugares y menor en otros.

"Creo que el rango de R0 consistente con los datos de Covid-19 es mayor de lo que la mayoría de la gente le da crédito", dijo Marc Lipsitch de la Universidad de Harvard, quien ha estado asesorando a funcionarios de salud en Massachusetts y en el extranjero. Citó datos que indican que podría ser más del doble en algunos entornos urbanos que el promedio general de los Estados Unidos.

Y así como R0 resulta ser una variable, y no un número estático, la forma en que las personas adquieren su inmunidad también varía, con importantes implicaciones para calcular ese umbral de inmunidad de rebaño.

Por lo general, los investigadores solo piensan en la inmunidad colectiva en el contexto de las campañas de vacunación, muchas de las cuales suponen que todos tienen la misma probabilidad de contraer y propagar una enfermedad. Pero en una infección de propagación natural, ese no es necesariamente el caso. Las diferencias en los comportamientos sociales hacen que algunas personas tengan más exposición a una enfermedad que otras. Las diferencias biológicas también juegan un papel en la probabilidad de que las personas se infecten.



Gabriela Gomes, de la Universidad de Strathclyde en Escocia, estudia cómo las diferencias biológicas y de comportamiento pueden afectar la propagación de un virus. Ella concluye que algunas partes del mundo ya pueden estar cerca de alcanzar la inmunidad colectiva. Cortesía de Gabriela Gomes.

"Nacimos diferentes, y luego estas diferencias se acumulan a medida que vivimos diferentes experiencias", dijo Gabriela Gomes, de la Universidad de Strathclyde en Escocia. "Esto afecta la capacidad de las personas para combatir un virus".

Los epidemiólogos se refieren a estas variaciones como la "heterogeneidad de susceptibilidad", es decir, las diferencias que hacen que algunas personas tengan más o menos probabilidades de infectarse.

Pero esto es demasiado matiz para las campañas de vacunación. "Las vacunas generalmente no se distribuyen en una población con respecto a cuántos contactos tienen las personas o cuán susceptibles son, porque no lo sabemos", dijo Virginia Pitzer, de la Escuela de Salud Pública de Yale. En cambio, los funcionarios de salud adoptan un enfoque maximalista y, en esencia, vacunan a todos.

Sin embargo, en una pandemia en curso sin garantía de que una vacuna esté disponible en el corto plazo, la heterogeneidad de susceptibilidad tiene implicaciones reales para el umbral de inmunidad de rebaño de la enfermedad.

En algunos casos aumentará el umbral. Esto podría ser cierto en lugares como hogares de ancianos, donde la persona promedio podría ser más susceptible a Covid-19 que la persona promedio en la población en general.

Pero a mayor escala, la heterogeneidad generalmente reduce el umbral de inmunidad del rebaño. Al principio, el virus infecta a las personas que son más susceptibles y se propaga rápidamente. Pero para seguir propagándose, el virus tiene que pasar a las personas que son menos susceptibles. Esto dificulta la propagación del virus, por lo que la epidemia crece más lentamente de lo que podría haber anticipado en función de su tasa de crecimiento inicial.

"Es probable que la primera persona infecte a las personas que son más susceptibles, dejando a las personas que son menos susceptibles a la segunda mitad de la epidemia, lo que significa que la infección podría eliminarse antes de lo esperado". Dijo Lipsitch.


Estimando la heterogeneidad


Entonces, ¿cuánto más bajo es el umbral de inmunidad de rebaño cuando se habla de un virus que se propaga en la naturaleza, como la pandemia actual?

Según los modelos estándar, alrededor del 60 por ciento de la población de los EE. UU. Necesitaría vacunarse contra Covid-19 o recuperarse de él para frenar y finalmente detener la propagación de la enfermedad. Pero muchos expertos con los que hablé sospechan que el umbral de inmunidad del rebaño para la inmunidad adquirida naturalmente es más bajo que eso.

"Creo que es potencialmente entre 40 y 50 por ciento", dijo Pitzer.

Lipsitch está de acuerdo: "Si tuviera que adivinar, probablemente lo pondría alrededor del 50 por ciento".

En su mayoría son solo estimaciones informadas, porque es muy difícil cuantificar qué hace que una persona sea más susceptible que otra. Muchas de las características que podría pensar asignar a alguien, como la distancia social que están haciendo, pueden cambiar de una semana a otra.

“Todo el problema de la heterogeneidad solo funciona si las fuentes de heterogeneidad son las propiedades a largo plazo de una persona. Si se trata de un bar, eso en sí mismo no es lo suficientemente sostenido como para ser una fuente de heterogeneidad ", dijo Lipsitch.

La heterogeneidad puede ser difícil de estimar, pero también es un factor importante para determinar cuál es realmente el umbral de inmunidad del rebaño. Langwig cree que la comunidad epidemiológica no ha hecho lo suficiente para tratar de hacerlo bien.

"Hemos sido un poco descuidados al pensar en la inmunidad colectiva", dijo. "Esta variabilidad realmente importa, y debemos ser cuidadosos para ser más precisos sobre cuál es el umbral de inmunidad del rebaño".

Algunos documentos recientes lo han intentado. En junio, la revista Science publicó un estudio que incorporó un grado modesto de heterogeneidad y estimó el umbral de inmunidad del rebaño para Covid-19 en 43 por ciento en poblaciones amplias. Pero uno de los coautores del estudio, Tom Britton, de la Universidad de Estocolmo, cree que hay fuentes adicionales de heterogeneidad que su modelo no tiene en cuenta.

"En todo caso, creo que la diferencia es mayor, por lo que, de hecho, el nivel de inmunidad del rebaño es probablemente un poco menor al 43 por ciento", dijo Britton.

Otro nuevo estudio adopta un enfoque diferente para estimar las diferencias en la susceptibilidad a Covid-19 y pone el umbral de inmunidad de rebaño aún más bajo. Los 10 autores del artículo, que incluyen a Gomes y Langwig, estiman que el umbral para la inmunidad natural del ganado contra Covid-19 podría ser tan bajo como el 20 por ciento de la población. Si ese es el caso, los lugares más afectados del mundo pueden estar cerca de él.

"Estamos llegando a la conclusión de que las regiones más afectadas, como Madrid, pueden estar cerca de alcanzar la inmunidad colectiva", dijo Gomes. En mayo se publicó una versión anterior del documento, y los autores están trabajando actualmente en una versión actualizada, que esperan publicar pronto. Esta versión incluirá estimaciones de inmunidad de rebaño para España, Portugal, Bélgica e Inglaterra.

Sin embargo, muchos expertos consideran que estos nuevos estudios, no todos los cuales han sido revisados ​​por pares todavía, no son confiables.

En un hilo de Twitter en mayo, Dean enfatizó que existe demasiada incertidumbre sobre los aspectos básicos de la enfermedad, desde los diferentes valores de R0 en diferentes entornos hasta los efectos de relajar el distanciamiento social, como para depositar mucha confianza en los umbrales exactos de inmunidad de rebaño. El umbral podría ser un número siempre que muchas personas usen máscaras y eviten grandes reuniones, y otro número mucho más alto si y cuando la gente baja la guardia.

Otros epidemiólogos también son escépticos de los bajos números. Jeffrey Shaman, de la Universidad de Columbia, dijo que el 20 por ciento de la inmunidad del rebaño "no es consistente con otros virus respiratorios. No es consistente con la gripe. Entonces, ¿por qué se comportaría de manera diferente para un virus respiratorio frente a otro? No entiendo eso ".

Miller agregó: "Creo que el umbral de inmunidad del rebaño [para la inmunidad adquirida naturalmente] es inferior al 60 por ciento, pero no veo evidencia clara de que ningún [lugar] esté cerca de él".

En última instancia, la única forma de escapar verdaderamente de la pandemia de Covid-19 es lograr la inmunidad de rebaño a gran escala, en todas partes, no solo en un pequeño número de lugares donde las infecciones han sido más altas. Y eso probablemente solo sucederá una vez que una vacuna esté en uso generalizado.

Mientras tanto, para evitar la propagación del virus y reducir el valor de R0 tanto como sea posible, el distanciamiento, las máscaras, las pruebas y el rastreo de contactos están a la orden del día en todas partes, independientemente de dónde coloque el umbral de inmunidad del rebaño.

"No puedo pensar en ninguna decisión que tome de manera diferente en este momento si supiera que la inmunidad del rebaño está en otro lugar dentro del rango que creo que es, que es del 40 al 60 por ciento", dijo Lipsitch.

Shaman también cree que la incertidumbre sobre el umbral de inmunidad de rebaño adquirido naturalmente, combinado con las consecuencias de equivocarse, solo deja un camino a seguir: haga nuestro mejor esfuerzo para prevenir nuevos casos hasta que podamos introducir una vacuna para lograr la inmunidad de rebaño de manera segura.

"La pregunta es, ¿podría la ciudad de Nueva York soportar otro brote?" él dijo. "No lo sé, pero no juguemos con ese fuego".

martes, 5 de mayo de 2020

Usando aprendizaje automático para predicción del brote de COVID-19

Una metodología de aprendizaje automático para la predicción en tiempo real del brote COVID-19 2019-2020 mediante búsquedas en Internet, alertas de noticias y estimaciones de modelos mecanicistas

Dianbo Liu, Leonardo Clemente, Canelle Poirier, Xiyu Ding, Matteo Chinazzi, Jessica T Davis, Alessandro Vespignani, Mauricio Santillana
ArXiv


Presentamos una metodología oportuna y novedosa que combina estimaciones de enfermedades a partir de modelos mecanicistas con trazas digitales, a través de metodologías de aprendizaje automático interpretables, para pronosticar de manera confiable la actividad COVID-19 en las provincias chinas en tiempo real. Específicamente, nuestro método es capaz de producir pronósticos estables y precisos 2 días antes de la hora actual, y se utiliza como insumos (a) informes oficiales de salud del Centro Chino para el Control y la Prevención de Enfermedades (CDC de China), (b) relacionados con COVID-19 actividad de búsqueda en Internet de Baidu, (c) actividad de medios informativos informada por Media Cloud, y (d) pronósticos diarios de actividad COVID-19 de GLEAM, un modelo mecanicista basado en agentes. Nuestra metodología de aprendizaje automático utiliza una técnica de agrupamiento que permite la explotación de sincronías geoespaciales de la actividad COVID-19 en las provincias chinas, y una técnica de aumento de datos para tratar el pequeño número de observaciones históricas de actividad de la enfermedad, característica de brotes emergentes. El poder predictivo de nuestro modelo supera a una colección de modelos de referencia en 27 de las 32 provincias chinas, y podría extenderse fácilmente a otras geografías actualmente afectadas por el brote de COVID-19 para ayudar a los tomadores de decisiones.







jueves, 30 de abril de 2020

Cambios en los patrones de contacto debido al brote COVID-19 en China

Los cambios en los patrones de contacto dan forma a la dinámica del brote de COVID-19 en China

Juanjuan Zhang, Maria Litvinova, Yuxia Liang, Yan Wang, Wei Wang, Shanlu Zhao, Qianhui Wu, Stefano Merler, Cécile Viboud, Alessandro Vespignani, Marco Ajelli, Hongjie Yu
Science
DOI: 10.1126 / science.abb8001

Resumen

Se implementaron intensas intervenciones no farmacéuticas en China para detener la transmisión de la nueva enfermedad por coronavirus (COVID-19). A medida que la transmisión se intensifica en otros países, la interacción entre la edad, los patrones de contacto, el distanciamiento social, la susceptibilidad a la infección y la dinámica de COVID-19 sigue sin estar clara. Para responder a estas preguntas, analizamos los datos de las encuestas de contacto de Wuhan y Shanghai antes y durante el brote y la información de localización de contactos de la provincia de Hunan. Los contactos diarios se redujeron de 7 a 8 veces durante el período de distancia social de COVID-19, y la mayoría de las interacciones se restringieron al hogar. Encontramos que los niños de 0 a 14 años son menos susceptibles a la infección por SARS-CoV-2 que los adultos de 15 a 64 años de edad (relación impar 0,34; IC del 95%: 0,24 a 0,49), mientras que, por el contrario, las personas mayores de 65 años son más susceptibles a infección (relación impar 1.47, IC 95%: 1.12-1.92). Con base en estos datos, creamos un modelo de transmisión para estudiar el impacto del distanciamiento social y el cierre de escuelas en la transmisión. Encontramos que el distanciamiento social solo, tal como se implementó en China durante el brote, es suficiente para controlar COVID-19. Si bien el cierre proactivo de las escuelas no puede interrumpir la transmisión por sí solo, pueden reducir la incidencia máxima en un 40-60% y retrasar la epidemia.


La nueva epidemia de la enfermedad por coronavirus 2019 (COVID-19) causada por el SARS-CoV-2 comenzó en la ciudad de Wuhan, China, en diciembre de 2019 y se extendió rápidamente a nivel mundial, con 2,063,161 casos reportados en 185 países / regiones al 16 de abril de 2020 (1) . Un total de 82,692 casos de COVID-19, incluidas 4,632 muertes, se han reportado en China continental, incluidos 50,333 casos en la ciudad de Wuhan y 628 casos en la ciudad de Shanghai (2). La epidemia en Wuhan y en el resto de China disminuyó después de la implementación de estrictas medidas de contención y restricciones de movimiento, con casos recientes originados por viajes (3). Sin embargo, quedan preguntas clave sobre el perfil de edad de la susceptibilidad a la infección, cómo el distanciamiento social altera los patrones de contacto específicos de la edad y cómo estos factores interactúan para afectar la transmisión. Estas preguntas son relevantes para la elección de políticas de control para gobiernos y formuladores de políticas en todo el mundo. En este estudio, evaluamos los cambios en los patrones de mezcla vinculados al distanciamiento social mediante la recopilación de datos de contacto en medio de la epidemia en Wuhan y Shanghai. También estimamos las diferencias de edad en la susceptibilidad a la infección a partir de los datos de rastreo de contactos recopilados por el Centro Provincial de Control y Prevención de Enfermedades (CDC) de Hunan, China. En base a estos datos empíricos, desarrollamos un modelo matemático de transmisión de enfermedades para desenredar cómo la transmisión se ve afectada por las diferencias de edad en la biología de la infección por COVID-19 y los patrones de mezcla alterados debido al distanciamiento social. Además, proyectamos el impacto del distanciamiento social y el cierre de escuelas en la transmisión de COVID-19.

Para estimar los cambios en los patrones de mezcla de edad asociados con las intervenciones COVID-19, realizamos encuestas de contacto en dos ciudades: Wuhan, el epicentro del brote, y Shanghai, una de las ciudades más grandes y densamente pobladas del sureste de China. Shanghai experimentó una amplia importación de casos COVID-19 de Wuhan, así como la transmisión local (4). Las encuestas se llevaron a cabo del 1 de febrero de 2020 al 10 de febrero de 2020, ya que la transmisión de COVID-19 alcanzó su punto máximo en China y se implementaron intervenciones estrictas. Se pidió a los participantes en Wuhan que completaran un cuestionario que describiera su comportamiento de contacto (5, 6) en dos días diferentes: i) un día de semana regular entre el 24 de diciembre de 2019 y el 30 de diciembre de 2019, antes de que el brote de COVID-19 fuera reconocido oficialmente por el Comisión de Salud Municipal de Wuhan (utilizada como línea de base); y ii) el día anterior a la entrevista (período de brote). Se pidió a los participantes en Shanghai que completaran el mismo cuestionario utilizado para Wuhan, pero solo informaron contactos para el período del brote. Para el período de referencia en Shanghai, confiamos en una encuesta realizada en 2017-2018 siguiendo el mismo diseño (7). En estas encuestas, un contacto se definió como una conversación bidireccional que involucra tres o más palabras en presencia física de otra persona, o un contacto físico directo (por ejemplo, un apretón de manos). Los detalles se dan en los materiales complementarios (secciones 1 y 2).

Analizamos un total de 1,245 contactos informados por 636 participantes del estudio en Wuhan, y 1,296 contactos informados por 557 participantes en Shanghai. En Wuhan, el número promedio diario de contactos por participante se redujo significativamente de 14.6 para el período de referencia (contactos promedio ponderados por estructura de edad: 14.0) a 2.0 para el período del brote (contactos promedio ponderados por estructura de edad: 1.9) (p <0.001 ) La reducción en los contactos fue significativa para todas las estratificaciones por sexo, grupo de edad, tipo de profesión y tamaño del hogar (Tabla 1). Se observó una reducción mayor en Shanghai, donde el número promedio diario de contactos disminuyó de 18.8 (contactos medios ponderados por estructura de edad: 19.8) a 2.3 (contactos medios ponderados por estructura de edad: 2.1). Aunque una persona promedio en Shanghai informó más contactos que uno en Wuhan en un día laborable regular, esta diferencia esencialmente desapareció durante el período del brote de COVID-19. Se encontró una disminución similar en el número de contactos en el Reino Unido durante el período de bloqueo de COVID-19 (8).


Tabla 1. Número de contactos por características demográficas y ubicación.
CaracterísticasWuhanShangai
Período baseBrote de COVID-19  en WuhanDiferenciabPeríodo baseBrote de COVID-19  en ShangaiDiferenciab
N
(%)a
Media
(95% CIc)
N
(%)a
Media
(95% CIc)
N
(%)
Media
(95% CIc)
N
(%)
Media
(95% CIc)
Total624
(100.0)
14.6
(12.9, 16.3)
627
(100.0)
2
(1.9, 2.1)
12.6***965
(100.0)
18.8
(17.8, 19.8)
557
(100.0)
2.3
(2, 2.8)
16.4***
Sexo
 Masc300
(48.1)
14.5
(12.2, 17.1)
301
(48)
1.8
(1.7, 2)
12.6***474
(49.1)
19
(16.9, 21)
286
(51.3)
2.1
(1.9, 2.4)
16.9***
 Fem324
(51.9)
14.7
(12.5, 17.1)
326
(52)
2.1
(2, 2.3)
12.5***491
(50.9)
18.5
(16.8, 20.4)
271
(48.7)
2.6
(2.1, 3.6)
16***
Grupo etáreo
 0-6 y12
(1.9)
8.6
(3.4, 17.4)
12
(1.9)
2.2
(1.7, 2.8)
6.4***88
(9.1)
11.6
(9.2, 14.3)
14
(2.5)
1.9
(1.7, 2.2)
9.7***
 7-19 y79
(12.7)
16.2
(12.7, 19.6)
79
(12.6)
2.1
(2, 2.2)
14.1***141
(14.6)
27
(23.1, 30.7)
55
(9.9)
2.6
(2, 3.4)
24.5***
 20-39 y254
(40.7)
15.3
(12.8, 18)
256
(40.8)
2.1
(1.9, 2.2)
13.2***236
(24.5)
22.4
(19.8, 25.9)
254
(45.6)
2.2
(2, 2.5)
20.2***
 40-59 y221
(35.4)
13.8
(11.4, 16.7)
220
(35.1)
2
(1.8, 2.2)
11.8***233
(24.1)
19.9
(17.7, 23.3)
160
(28.7)
2.8
(2, 4.1)
17.1***
 ≥60 y58
(9.3)
13.9
(7.9, 20.7)
60
(9.6)
1.4
(1.2, 1.7)
11.6***267
(27.7)
12.6
(10.8, 14.7)
74
(13.3)
1.6
(1.3, 1.8)
11***
Tipo de profesión
 Pre-escolar12
(1.9)
8.6
(3.4, 17.4)
12
(1.9)
2.2
(1.7, 2.8)
6.4***79
(8.2)
10.4
(8, 13.3)
14
(2.5)
1.9
(1.7, 2.1)
8.5***
 Estudiante107
(17.1)
14.6
(11.4, 18.2)
107
(17.1)
2.1
(2, 2.3)
12.5***173
(17.9)
26.2
(23.1, 29.2)
71
(12.7)
2.5
(2, 3.4)
23.7***
 Empleado391
(62.7)
15.4
(13.4, 17.4)
390
(62.2)
2.1
(1.9, 2.2)
13.2***400
(41.5)
22.5
(20.7, 24.4)
354
(63.6)
2.5
(2.1, 3.2)
20***
 Desempleado30
(4.8)
14.1
(5.7, 24.2)
31
(4.9)
1.8
(1.4, 2.4)
12.2***29
(3)
14.5
(7.8, 24.2)
24
(4.3)
1.8
(1.3, 2.4)
12.6***
 Retirado84
(13.5)
12.1
(7.2, 17.4)
87
(13.9)
1.5
(1.3, 1.7)
10.6***278
(28.8)
11.8
(10.2, 13.2)
94
(16.9)
1.6
(1.3, 1.8)
10.2***
Tamaño de familia
 145
(7.2)
10.5
(5.3, 17.2)
45
(7.2)
0.6
(0.1, 1.5)
9.9***35
(3.6)
15.2
(10.1, 21.1)
61
(11)
0.3
(0.1, 0.5)
14.9***
 273
(11.7)
12.6
(8.2, 18.3)
76
(12.1)
1.1
(1, 1.2)
11.5***244
(25.3)
14.5
(12.7, 16.7)
138
(24.8)
1.4
(1.1, 1.7)
13.1***
 3282
(45.2)
14.8
(12.8, 17.3)
283
(45.1)
1.9
(1.8, 2)
13***432
(44.8)
20.3
(17.7, 22.4)
216
(38.8)
2.2
(2, 2.3)
18.1***
 4133
(21.3)
11.9
(9.3, 15)
132
(21.1)
2.3
(2.2, 2.5)
9.6***117
(12.1)
20.3
(16.5, 23.8)
78
(14)
3
(2.8, 3.3)
17.3***
 ≥591
(14.6)
21.5
(16.2, 27.3)
91
(14.5)
3.2
(2.9, 3.4)
17.8***137
(14.2)
21.4
(18.2, 27)
64
(11.5)
5.9
(4, 9.9)
15.5***
a - Puede diferir del tamaño total de la muestra (n = 636), ya que también incluye a los participantes que no habían registrado contactos durante el período de referencia o durante el brote de COVID-19. Tenga en cuenta que los denominadores reducidos indican datos faltantes. Los porcentajes pueden no sumar 100 debido al redondeo.

b - La diferencia se calcula al restar el número de contactos durante el brote del número de contactos durante el período de referencia. Los valores P se toman de una regresión binomial negativa con una sola variable binaria que distingue el período de referencia del brote.

c - El intervalo de confianza del 95% en la media se calcula mediante muestreo bootstrap.

* p <0.05, ** p <0.01, *** p <0.001.



Las características típicas de los patrones de mezcla de edades (6, 7) surgen en Wuhan y Shanghai cuando consideramos el período de referencia (Fig. 1, A y D). Estas características se pueden ilustrar en forma de matrices de contacto estratificadas por edad (proporcionadas como tablas listas para usar en los materiales complementarios, sección 3.6), donde cada celda representa el número promedio de contactos que un individuo tiene con otros individuos, estratificados por grupos de edad. La esquina inferior izquierda de la matriz, correspondiente a los contactos entre niños en edad escolar, es donde se registra el mayor número de contactos. La contribución de los contactos en el lugar de trabajo es visible en la parte central de la matriz, mientras que las tres diagonales (de abajo a la izquierda a arriba a la derecha) representan contactos entre los miembros del hogar. Por el contrario, para el período del brote donde se aplicaron políticas estrictas de distanciamiento social, gran parte de las características mencionadas anteriormente desaparecen, dejando esencialmente la única contribución de la mezcla de hogares (Fig. 1, B y E). En particular, los contactos surtidos entre individuos en edad escolar se eliminan por completo, como se ilustra al diferenciar las matrices de referencia y de brotes (Fig. 1, C y F). En general, los contactos durante el brote ocurrieron principalmente en el hogar con miembros del hogar (94.1% en Wuhan y 78.5% en Shanghai). Por lo tanto, la matriz de contacto de brotes casi coincide con la matriz de contacto dentro del hogar en ambos sitios de estudio y el patrón de surtido por edad observado durante los días regulares desaparece casi por completo (ver materiales complementarios, sección 3.6). Estos hallazgos son consistentes con las tendencias en los datos de movilidad dentro de la ciudad, que indican una caída del 86,9% en Wuhan y del 74,5% en Shanghai entre principios de enero y principios de febrero (ver materiales complementarios, sección 4). Una disminución tan grande en la movilidad interna es consistente con la mayoría de los contactos que ocurren en el hogar durante el período del brote. Es de destacar que las estrictas medidas de distanciamiento social implementadas en Wuhan y Shanghai no eliminaron por completo los contactos en el lugar de trabajo, ya que los trabajadores esenciales continuaron realizando sus actividades (como se observa en nuestros datos, ver materiales complementarios, sección 3.5).




Fig. 1 Matrices de contacto por edad.
(A) Matriz de contacto del período de referencia para Wuhan (solo entre semana). Cada celda de la matriz representa el número medio de contactos que un individuo en un determinado grupo de edad tiene con otros individuos, estratificados por grupos de edad. La intensidad del color representa el número de contactos. Para construir la matriz, realizamos un muestreo de arranque con el reemplazo de los participantes de la encuesta ponderado por la distribución de edad de la población real de Wuhan. Cada celda de la matriz representa un promedio de más de 100 realizaciones de arranque. (B) Igual que (A), pero para la matriz de contacto de brote para Wuhan. (C) Diferencia entre la matriz de contacto del período de referencia y la matriz de contacto del brote en Wuhan. (D) Igual que (A), pero para Shanghai. (E y F) Igual que (B) y (C), pero para Shanghai.

Los patrones de mezcla estimados se basan en contactos autoinformados que pueden verse afectados por diversos sesgos. En particular, los contactos informados para el período de referencia en Wuhan pueden ser propensos a recordar sesgos ya que los contactos se evaluaron retrospectivamente. Además, debido a la naturaleza retrospectiva de la encuesta de referencia en Wuhan, no pudimos dar cuenta de la menor cantidad de contactos durante los fines de semana. Los datos más completos de Shanghai no sufrieron sesgos de memoria y nos permitieron evaluar los contactos entre semana y fines de semana; los análisis de sensibilidad sugieren que esto tiene poco impacto en los resultados (materiales complementarios, sección 8.3). Otro posible sesgo es que los participantes de la encuesta pueden haber sentido presión para minimizar los contactos reportados que ocurrieron durante el brote, dado que el distanciamiento social estaba en su lugar y era estrictamente impuesto por el gobierno, incluso si se enfatizaba el anonimato y la confidencialidad de la encuesta. Sin embargo, los resultados son sólidos para inflar los contactos informados fuera del hogar varias veces, lo que sugiere que estos sesgos de cumplimiento y aceptabilidad social vinculados al período del brote no afectan nuestros hallazgos principales (materiales complementarios, sección 8.2). Otra advertencia es que, paralelamente a las medidas de distanciamiento social a nivel de población, se implementaron intervenciones basadas en casos que podrían afectar los contactos, incluido el aislamiento rápido de casos confirmados y sospechosos, y la cuarentena de contactos cercanos durante 14 días. Sin embargo, solo una pequeña porción de la población en los dos sitios de estudio se vio afectada por el rastreo de contactos y la cuarentena, por lo que tuvo poco o ningún efecto sobre los patrones de contacto promedio en la población general.

Luego, para comprender la interacción entre las intervenciones de distanciamiento social, los cambios en los patrones de mezcla humana y la dinámica de los brotes, debemos considerar las posibles diferencias de edad en la susceptibilidad a la infección. Este es actualmente un tema de debate, ya que hay poca información disponible sobre el perfil de edad de los casos asintomáticos (9, 10). Con este objetivo, analizamos la información de rastreo de contactos de COVID-19 obtenida de investigaciones epidemiológicas de campo detalladas realizadas por los CDC de Hunan (materiales complementarios, sección 5). Brevemente, todos los contactos cercanos de los casos de COVID-19 notificados en la provincia de Hunan fueron sometidos a observación médica durante 14 días y se analizaron mediante RT-PCR en tiempo real. Los que dieron positivo fueron considerados infecciones por SARS-CoV-2. Estimamos las proporciones impares (OR) para que un contacto de un determinado grupo de edad se infecte, en relación con un grupo de edad de referencia. Realizamos una regresión de modelo mixto lineal generalizado para tener en cuenta la agrupación y la estructura de correlación potencial de los contactos expuestos al mismo caso índice (por ejemplo, en el hogar). Incluimos el grupo de edad y el sexo de un contacto, el tipo de contacto y si el contacto viajó a Hubei / Wuhan como covariables de regresión (ver materiales complementarios, sección 5). Encontramos que la susceptibilidad a la infección por SARS-CoV2 aumentó con la edad. Los individuos jóvenes (de 0 a 14 años) tenían un menor riesgo de infección que los individuos de 15 a 64 años [OR = 0,34 (IC 95%: 0,24-0,49), valor p <0,0001]. Por el contrario, las personas mayores de 65 años y más tenían un mayor riesgo de infección que los adultos de 15 a 64 años [OR = 1.47 (IC 95%: 1.12-1.92), valor p = 0.005]. Estos hallazgos están en contraste con un estudio previo en Shenzhen, donde la susceptibilidad a la infección no cambió con la edad (9).

A continuación, exploramos cómo nuestros datos pueden informar estrategias de control para COVID-19. Un parámetro clave que regula la dinámica de una epidemia es el número de reproducción básica (R0), que corresponde al número promedio de casos secundarios generados por un caso índice en una población totalmente susceptible. Estimamos el impacto de las intervenciones en R0, confiando en nuestras estimaciones específicas de edad de susceptibilidad a infecciones y patrones de contacto antes y durante las intervenciones. Utilizamos el enfoque de matriz de próxima generación para cuantificar los cambios en R0 (11) (materiales complementarios, sección 6). Además, para ilustrar el impacto de los patrones de mezcla de edades en la dinámica de la epidemia, desarrollamos un modelo SIR simple de transmisión de SARS-CoV-2 (materiales complementarios, sección 6). En el modelo, la población se divide en tres categorías epidemiológicas: susceptibles, infecciosas y eliminadas (individuos recuperados o fallecidos), estratificadas por 14 grupos de edad. Los individuos susceptibles pueden volverse infecciosos después del contacto con un individuo infeccioso de acuerdo con la susceptibilidad a la infección específica por edad estimada. La velocidad a la que se producen los contactos está determinada por los patrones de mezcla estimados de cada grupo de edad. Se consideró que el intervalo de tiempo medio entre dos generaciones consecutivas de casos fue de 5,1 días, suponiendo que se alinea con la media del intervalo en serie informado por Zhang et al. (3)

En las primeras fases de la propagación de COVID-19 en Wuhan, antes de que se implementaran las intervenciones, se estimó que los valores de R0 oscilaban entre 2.0 y 3.5 (12-18). En este análisis, ampliamos este rango de 1 a 4 para el período de referencia (es decir, antes de las intervenciones). Encontramos que los cambios considerables en los patrones de mezcla observados en Wuhan y Shanghai durante el período de distanciamiento social condujeron a una disminución drástica en R0 (Fig. 2). Cuando consideramos las matrices de contacto que representan el período del brote, manteniendo la misma transmisibilidad de la enfermedad de referencia que en el período previo a la intervención, el número reproductivo cae muy por debajo del umbral epidémico en Wuhan (Fig. 2A) y Shanghai (Fig. 2B). Este hallazgo es robusto para suponer relajantes sobre las diferencias de edad en la susceptibilidad a la infección; la epidemia aún está bien controlada si se supone que la infección por SARS-CoV-2 es igualmente probable en todos los grupos de edad (Fig. 2, A y B). También realizamos análisis de sensibilidad con respecto a los posibles sesgos de recuerdo y cumplimiento de los contactos autoinformados, así como la definición de contacto (es decir, considerando solo los contactos que duran más de 5 minutos). Los resultados son consistentes con los reportados aquí (ver materiales suplementarios, sección 8).



Fig. 2 Efecto de los patrones de contacto sobre la propagación de la epidemia.
(A) R0 estimado durante el brote (media e IC del 95%), en función del R0 basal (es decir, el derivado mediante el uso de la matriz de contacto estimada para el período basal). La figura se refiere a Wuhan e incluye tanto el escenario que representa la susceptibilidad estimada a la infección por edad como el supuesto de que todos los individuos son igualmente susceptibles a la infección. La distribución de la velocidad de transmisión se estima a través del enfoque de matriz de próxima generación mediante el uso de 100 matrices de contacto de arranque para el período de referencia para obtener los valores R0 deseados. Luego usamos la distribución estimada de la tasa de transmisión de las matrices de contacto de brote bootstrapped para estimar R0 para el período del brote. Los intervalos de confianza del 95% explican la incertidumbre sobre la distribución de la tasa de transmisión, los patrones de mezcla y la susceptibilidad a la infección por edad. (B) Como (A), pero para Shanghai. (C) Tasa de ataque de infección un año después del caso inicial de COVID-19 (media e IC del 95%) en función de la línea de base R0. Las estimaciones son mediante la simulación del modelo de transmisión SIR (ver materiales complementarios) utilizando la matriz de contacto para el período de referencia y considerando la susceptibilidad estimada a la infección por edad y suponiendo que todos los individuos son igualmente susceptibles a la infección. Los intervalos de confianza del 95% explican la incertidumbre sobre los patrones de mezcla y la susceptibilidad a la infección por edad. (D) Como (C), pero para Shanghai.

En una epidemia no controlada (sin medidas de intervención, restricciones de viaje o respuestas conductuales espontáneas de la población), y para R0 en el rango 2-3, estimamos que la tasa de ataque de infección promedio está en el rango 53% -92% después de un año de circulación de SARS-CoV-2, con ligera variación entre Wuhan (Fig. 2C) y Shanghai (Fig. 2D). Estas estimaciones deben considerarse como un límite superior de la tasa de ataque de infección, ya que se basan en un modelo compartimental que no tiene en cuenta la alta agrupación de contactos (por ejemplo, contactos repetidos entre miembros del hogar). Si consideramos un escenario en el que las medidas de distanciamiento social se implementan desde el principio, a medida que emerge el nuevo virus, el R0 estimado permanece por debajo del umbral epidémico y, por lo tanto, la epidemia no puede despegar en ninguno de los dos lugares. Además, estimamos que la magnitud de las intervenciones implementadas en Wuhan y Shanghai habría sido suficiente para bloquear la transmisión de un R0 antes de las intervenciones hasta ~ 6 en Wuhan y ~ 7.8 en Shanghai.

A continuación, usamos el modelo para estimar el impacto del cierre preventivo masivo de escuelas. Consideramos dos escenarios de patrones de contacto diferentes, basados ​​en datos de Shanghai: contactos estimados durante el período de vacaciones (7) y contactos estimados durante los días hábiles regulares, después de que se hayan eliminado todos los contactos que ocurrieron en el entorno escolar (7). Ambos escenarios representan una simplificación de una estrategia de cierre escolar. De hecho, el cierre de escuelas en respuesta a la pandemia de COVID-19 en China ha implicado la interrupción de todos los servicios educativos en el sitio. Sin embargo, los patrones de mezcla medidos durante las vacaciones escolares indican que una fracción de los niños todavía asiste a actividades educativas adicionales, como es típico en las ciudades chinas. Por otro lado, al eliminar todos los contactos en el entorno escolar, no consideramos los posibles efectos de goteo en los patrones de mezcla de otros grupos de edad; por ejemplo, los padres pueden necesitar dejar el trabajo para cuidar a los niños en edad escolar. Nuestro enfoque de modelado indica que limitar los patrones de contacto a los observados durante las vacaciones interrumpiría la transmisión para la línea de base R0 hasta 1.5 (Fig. 3, A y C). Eliminar todos los contactos escolares haría lo mismo para la línea de base R0 hasta 1.2. Si aplicamos estas intervenciones a un escenario COVID-19, suponiendo una R0 basal de 2 - 3.5, podemos lograr una disminución notable en la tasa de ataque de infección y la incidencia máxima, y ​​un retraso en la epidemia, pero la transmisión no se interrumpe (Fig. 3, B y D). Por ejemplo, para la línea de base R0 = 2.5 y suponiendo un patrón de mezcla de vacaciones, la incidencia diaria máxima promedio se reduce en aproximadamente un 64%. En el escenario correspondiente donde se eliminan los contactos escolares, estimamos una reducción de alrededor del 42%. En general, las políticas de cierre basadas en la escuela no son suficientes para prevenir por completo un brote de COVID-19, pero pueden afectar la dinámica de la enfermedad y, por lo tanto, la capacidad de sobretensión hospitalaria. Es importante destacar que las personas de 5 a 19 años en Shanghai representan el 9,5% de la población (19), notablemente más baja que la media en China [16,8% (19)] y otros países [incluidos los países occidentales; por ejemplo, 19.7% en los Estados Unidos (20)].



Fig. 3 Efecto de limitar los contactos escolares en la propagación de la epidemia.

(A) R0 estimado durante el brote (media e IC del 95%), en función del R0 basal (es decir, el derivado mediante el uso de la matriz de contacto estimada para el período basal). La cifra se refiere a Shanghai y al escenario que explica la susceptibilidad estimada a la infección por edad. Se consideran tres patrones de contacto: i) según lo estimado durante el brote de COVID-19, ii) según lo estimado durante las vacaciones escolares (7) y iii) según lo estimado para el período de referencia, pero suprimiendo todos los contactos en la escuela. (B) Incidencia diaria de nuevas infecciones por SARS-CoV-2 (media e IC del 95%) según lo estimado por el modelo SIR suponiendo susceptibilidad específica a la edad a la infección (ver materiales suplementarios). Se consideran tres patrones de mezcla: i) según lo estimado para el período de referencia, ii) según lo estimado durante las vacaciones escolares (7) y iii) según lo estimado para el período de referencia, pero suprimiendo todos los contactos en la escuela. El recuadro muestra la tasa de ataque de infección un año después de la introducción del primer caso COVID-19 (media e IC del 95%). (C) Como (A), pero suponiendo igual susceptibilidad a la infección por edad. (D) Como (B), pero suponiendo igual susceptibilidad a la infección por edad.


Los resultados de este estudio deben considerarse a la luz de las siguientes limitaciones. En nuestro modelo de simulación, estimamos el efecto del distanciamiento social solo; La combinación del distanciamiento social con otras intervenciones tendría un efecto sinérgico para reducir aún más la transmisión. Es probable que el distanciamiento social de toda la población, las estrategias basadas en casos y los esfuerzos de descontaminación hayan contribuido a lograr el control en Wuhan y Shanghai, y su efecto es difícil de separar en estudios observacionales retrospectivos. Nuestras estimaciones de las diferencias de edad en la susceptibilidad a la infección se basan en pruebas activas de 7.375 contactos de 136 casos índice confirmados. Estos datos sufren las dificultades habituales inherentes a la reconstrucción de los enlaces epidemiológicos y la detección de casos índice. Los datos de contacto son útiles, pero los estudios de seroepidemiología serán esenciales para resolver completamente los perfiles de susceptibilidad de la población a la infección y enfermedad por SARS-CoV-2. Si bien los patrones de edad de los contactos fueron similares en las dos ubicaciones del estudio durante el período del brote de COVID-19, estos patrones pueden no ser totalmente representativos de otras ubicaciones en China y en el extranjero, donde las medidas de distanciamiento social pueden diferir. Como todavía faltan estimaciones confiables de la contribución de las infecciones asintomáticas de SARS-CoV-2 a la transmisión, no modelamos explícitamente las diferencias entre individuos sintomáticos y asintomáticos. Consideramos un intervalo en serie de 5,1 días (3), basado en una estimación previa de China, en un momento en que las medidas de intervención basadas en casos y de seguimiento de contactos estaban en su lugar, lo que tiende a acortar el intervalo entre casos sucesivos. Sin embargo, esta elección no afecta los cambios estimados en el número de reproducción entre los períodos de inicio y brote. Los resultados del modelado pueden subestimar el efecto de las intervenciones de distanciamiento social ya que nuestros resultados se concentran en el número de contactos e ignoran el tipo de interacciones sociales (por ejemplo, una mayor distancia entre las personas mientras están en contacto o el uso de una máscara facial), que pueden haber cambiado debido a una mayor conciencia de la población (21, 22). Finalmente, vale la pena señalar que nuestras simulaciones de cierre de escuelas no están destinadas a formular una estrategia de intervención completa, que requeriría la identificación de desencadenantes epidémicos para iniciar el cierre y la evaluación de diferentes duraciones de intervención (6). No obstante, nuestro ejercicio de modelado proporciona una indicación del posible impacto de una estrategia preventiva a nivel nacional sobre la tasa de ataque de infección y la incidencia máxima. Para generalizar estos hallazgos a otros contextos, se deben considerar patrones de mezcla de edad específicos de la ubicación y estructuras de población. Quizás lo más importante es que las estrategias estrictas de bloqueo del tipo implementado en Wuhan, Shanghai y en otras regiones del mundo son extremadamente perjudiciales desde el punto de vista económico y mental, y son preferibles enfoques más específicos para bloquear la transmisión a largo plazo. No necesariamente respaldamos las políticas de bloqueo contundente aquí; simplemente describimos su impacto en la transmisión COVID-19 según la experiencia china.

Nuestro estudio proporciona evidencia de que las intervenciones implementadas en Wuhan y Shanghai, y los cambios resultantes en el comportamiento humano, disminuyeron drásticamente los contactos diarios, esencialmente reduciéndolos a las interacciones domésticas. Esto conduce a una reducción dramática de la transmisión de SARS-CoV-2. A medida que se implementan medidas de cierre en otros lugares, los patrones de mezcla humana en el período del brote podrían capturarse mediante datos sobre contactos dentro del hogar, que están disponibles para varios países de todo el mundo (5–7, 23–25). En el futuro, será particularmente importante diseñar estrategias específicas para el control a largo plazo de COVID-19, incluidas estrategias de control basadas en la escuela y el trabajo, junto con pruebas a gran escala y seguimiento de contactos (26–28). La investigación debe concentrarse en refinar las estimaciones específicas de edad de susceptibilidad a infección, enfermedad e infecciosidad, que son fundamentales para evaluar el impacto de estas estrategias.