domingo, 13 de enero de 2019

ARS 101: Amistad, redes y distribución de frecuencia de grados

Cómo la matemática de las redes puede ayudarte a hacer amigos

Estudiar la estructura de las amistades existentes en su comunidad puede ayudarlo a forjar las mejores conexiones al formar un nuevo círculo de amigos.


8



Patrick Honner | Quanta Magazine



Cuando comienzas en una nueva escuela o trabajo, o te mudas a una nueva ciudad, ¿cómo haces para hacer nuevos amigos? Podrías adoptar un enfoque activo, forjando conexiones estratégicas con los niños populares y los que hacen movimientos. O podría dejar las cosas al azar, confiando en agrupaciones y asociaciones aleatorias. Sea cual sea su enfoque, comprender la estructura de las amistades existentes en su nueva comunidad puede ayudarlo a hacer las mejores conexiones, que en última instancia definirán su círculo de amigos.

Imagínese mudarse a una ciudad nueva y extraña, Regulartown, que tiene una regla extraña: todos pueden tener a lo sumo cuatro amigos, y todos quieren maximizar sus amistades. ¿Cómo será la estructura de las amistades en Regulartown? Para explorar esta pregunta, usaremos un objeto matemático llamado red.

En pocas palabras, una red es un conjunto de objetos, llamados "nodos", y las conexiones entre ellos. Las redes son matemáticamente versátiles: pueden representar computadoras y los cables que las conectan, los autores y sus colaboraciones, o los estados de un cubo de Rubik y los movimientos que los transforman, esencialmente cualquier conjunto de conexiones, reales o abstractas. Para estudiar amistades en Regulartown, crearemos una red donde los nodos son personas y las conexiones son las amistades entre ellos.

Una forma útil de representar redes es imaginar los nodos como puntos y las conexiones como segmentos de línea, lo que también llamaremos enlaces. Este diagrama de red nos puede dar una idea de su estructura. Entonces, ¿cómo será la red de amistades en Regulartown? En algún momento puede parecer algo como esto:




Cada persona intentará encontrar a sus cuatro amigos y, a medida que nuevas personas se muden a la ciudad, buscarán a alguien con menos de cuatro amigos para conectarse. De esta manera, la red seguirá creciendo con el tiempo, expandiéndose continuamente en los enlaces a medida que se agregan nuevos nodos. (También es posible que se formen camarillas independientes, pero ignoraremos esa posibilidad en nuestro ejemplo).

Los diagramas de redes pueden iluminarse cuando indican una estructura clara. Pero cuando las redes se vuelven grandes o no exhiben el tipo de estructura regular de un Regulartown, los diagramas pueden ser menos útiles. Ayuda a desarrollar diferentes formas de analizar la estructura de una red. Una forma es pensar en la distribución del grado de la red.

En una red, el número de conexiones que tiene un nodo se conoce como el "grado" de ese nodo. Un nodo con un alto grado está conectado a muchos otros nodos; un nodo con un grado bajo está conectado a algunos otros nodos.



El grado de un nodo es una medida importante en una red, pero es local: solo describe la estructura de una red en un solo nodo. Pero al pensar en los grados de todos los nodos a la vez, podemos crear una herramienta útil para comprender la estructura global de una red.

En nuestra red de amistad, el grado de cada nodo es el número de amigos que tiene cada persona. En Regulartown, la mayoría de las personas tendrá cuatro amigos, por lo que la mayoría de los nodos tendrán el grado 4. Los residentes no tendrán más de cuatro amigos, pero algunos tendrán menos, por lo que habrá nodos con los grados 3, 2 o 1. Podemos resumir la distribución de grados como este:



Este histograma transmite información importante sobre la estructura de nuestra red. En este simple ejemplo, puede que no nos diga tanto como nuestro diagrama de red, pero veremos cómo las distribuciones de grado pueden ser herramientas poderosas para comprender diferentes tipos de redes.

Vayamos a una nueva ciudad. En Randomville, las amistades suceden al azar. Dado que la aleatoriedad puede ser un asunto complicado, seamos claros sobre lo que queremos decir: imaginaremos a cada persona de la ciudad como un nodo en una red, lo que hace que cada posible ventaja sea una posible amistad. Para generar una amistad aleatoria, elegiremos uno de esos posibles enlaces al azar y lo dibujaremos, estableciendo una conexión entre esos dos nodos y, por lo tanto, una amistad entre esas dos personas.

¿Cómo sería la red de Randomville? Suponiendo que comencemos con un grupo de nodos y agregamos al azar un grupo de enlaces, la imagen puede verse así:


Puede ser difícil ver la estructura en este diagrama. Pero el grado de distribución de esta red es esclarecedor. Si bien no es fácil calcular directamente, podemos razonar a través de algunas propiedades importantes usando un ejemplo simple.

Imagina que eres una de las 10 personas en Randomville. ¿Cuántas amistades posibles hay? Cada una de las 10 personas podría estar conectada a las otras nueve, por lo que parece que potencialmente podría dibujar 10 × 9 = 90 enlaces. Pero esto en realidad cuenta cada amistad posible dos veces: una para cada amigo. Entonces, el número total de amistades posibles es realmente 90 dividido por 2, o 45.

Ahora digamos que elegimos al azar una amistad, es decir, seleccionamos al azar uno de los 45 enlaces posibles en nuestra red. ¿Cuál es la probabilidad de que se conecte con usted? Bueno, hay nueve enlaces posibles que se extienden desde usted a cada uno de los otros nueve nodos. Dado que nueve de los 45 enlaces se conectan con usted, la probabilidad de que un enlace seleccionado al azar se conecte con usted es de 94515, o 20 por ciento.

Pero este mismo argumento se aplica a todos en Randomville, por lo que cada nodo tiene un 20% de probabilidad de estar conectado al enlace seleccionado al azar. Ahora, a medida que se agregan los enlaces (y los nodos), estas probabilidades cambiarán ligeramente, pero a la larga seguirán siendo aproximadamente las mismas. Esto significa que las amistades se distribuirán de manera bastante uniforme alrededor de Randomville. Habrá algunas variaciones leves aquí y allá, pero tener pocos amigos o muchos amigos será poco probable. En Randomville, es probable que casi todos terminen con algo parecido a un número promedio de amigos.

 Estas características familiares están incorporadas en la distribución de grado "binomial" de una red aleatoria típica.

 

Al observar solo la distribución en grados de esta red, podemos inferir un tipo particular de uniformidad: cuando se trata de conectividad, la mayoría de los nodos son promedio y muy pocos son extremos. Esta es una información útil cuando se trata de entender la estructura de la red. (A medida que se agregan nodos, digamos, cuando nuevas personas vienen a la ciudad, la distribución cambiará ligeramente, pero las características generales persistirán).

Ahora, ninguno de estos dos ejemplos, la regla de la mayoría de los cuatro amigos de Regulartown o las amistades seleccionadas al azar de Randomville, son modelos realistas de amistad. Las personas pueden tener más de cuatro amigos, y tener muchos amigos no es tan inusual como sugiere la distribución binomial. Entonces, ¿qué es un modelo de amistad más realista?

A medida que establezca conexiones con amigos y amigos de amigos, la estructura de sus amistades probablemente compartirá características comunes a otras redes del mundo real como redes de alimentos, interacciones de proteínas e Internet. Estas características caracterizan las llamadas redes "sin escala", un modelo de conectividad que ha llegado a dominar la ciencia de redes en los últimos 20 años. Investigadores de matemáticas, física, economía, biología y ciencias sociales han visto los signos reveladores de redes sin escala en sus campos dispares.



Una compleja red sin escala que representa los metadatos de una red social.
Martin Grandjean

La estructura de las redes sin escala depende del principio simple de "conexión preferencial". La conexión preferencial es una regla de crecimiento de la red rica en riqueza: un nodo con muchas conexiones existentes es más probable que obtenga nuevas conexiones que un nodo con pocas conexiones Conexiones existentes. Las nuevas conexiones muestran una preferencia por los nodos de alto grado.

¿Tiene sentido esto en el contexto de la formación de la amistad? En general, parece razonable argumentar que una persona con muchos amigos tendrá más probabilidades de hacer nuevos amigos. Como ya están conectados a más personas, es más probable que conozcan a nuevas personas a través de esas conexiones existentes. Tener más amigos crea más oportunidades para hacer nuevos amigos. Y el hecho de que ya tengan muchos amigos sugiere que pueden tener algún tipo de capacidad o afinidad para hacer amigos. Esto probablemente atraerá a otros, al igual que los sitios web populares dibujan enlaces de otros sitios y blogs, y las ciudades establecidas invitan a nuevas líneas de ferrocarril y rutas aéreas.

Si bien hay múltiples factores que intervienen en el desarrollo de redes sin escala, muchos consideran que el vínculo preferencial es el más fundamental. Y tiene una consecuencia fascinante en la distribución de un grado de red.



El apego preferencial predice una distribución de grados "de cola gruesa". La mayoría de los nodos en la red serán de grado bajo, pero habrá nodos de grado cada vez más alto. Esto contrasta con las redes de amistad de Regulartown y Randomville, que tenían pocos o ningún nodo de alto grado.

Estos nodos de alto grado, que actúan como centros, son una característica crítica de las redes sin escala. Son las mariposas sociales de las redes de amistad, los bancos en el centro de las economías, los enrutadores centralizados que recorren las líneas regionales de Internet, los Kevin Bacons del mundo en funciones. Los hubs pueden aportar una sensación de pequeño mundo a una red enorme; por ejemplo, dos usuarios seleccionados al azar de los dos mil millones de personas en Facebook son, en promedio, menos de cuatro amigos. Y la cantidad y diversidad de hubs también proporciona a las redes sin escalas resistencia frente a ciertos tipos de fallas: por ejemplo, incluso si fallan muchas conexiones a Internet, los mensajes aún se pueden transmitir, en parte porque todavía habrá muchas formas de llegar y salir de la red. muchos centros (hubs).

Si bien parece haber acuerdo sobre la utilidad de las redes sin escala y sus características de alto nivel, esta área de estudio no está exenta de controversia. Las características matemáticas precisas de estas distribuciones de grados pueden ser difíciles de interpretar. En su libro Linked: The New Science of Networks, el pionero de la ciencia en redes y físico Albert-László Barabási argumentó que las redes que exhiben un apego preferencial tendrán distribuciones de grado que esencialmente siguen una "ley de poder". Las distribuciones de la ley de poder se ven en muchas situaciones físicas, Como las leyes de la inversa al cuadrado de la gravitación y los campos eléctricos. Pueden representarse como funciones de la forma  f(x)=axk, y sus gráficas suelen tener este aspecto:



Las distribuciones de la ley de poder tienen colas gruesas. ¿Pero qué tan gordo? Es decir, ¿cuántos concentradores de cada grado deberíamos esperar en una red de este tipo? Un estudio publicado a principios de este año analizó 1,000 redes del mundo real y concluyó que solo un tercio tenía distribuciones de grado que podrían ser descritas razonablemente por una distribución de ley de poder. Muchas de las redes tenían distribuciones de grado que podrían describirse con mayor precisión utilizando distribuciones "exponenciales" y "log-normal". Pueden tener las características de alto nivel características de las redes sin escala, pero sin la distribución de grado esperada, ¿pueden realmente considerarse sin escala? ¿Y realmente importa?

Importa si queremos conectar nuestras teorías a nuestros datos. ¿Es el apego preferencial realmente el factor principal en la formación de redes sin escala? ¿O hay otros factores que también desempeñan roles sustanciales, factores que pueden impulsar las distribuciones de grados en diferentes direcciones? Responder a estas preguntas y descubrir cuáles son las preguntas correctas que se formulan a continuación, es parte de comprender completamente la naturaleza y la estructura de las redes, cómo se desarrollan y cómo evolucionan.

Y la controversia también nos recuerda que, al igual que nuestras redes, las matemáticas en sí mismas son un conjunto de conexiones en evolución. La investigación contemporánea está desafiando las conjeturas de 20 años en el campo relativamente joven de la ciencia de redes. A medida que las nuevas ideas se unen a la red, nos conectan a las matemáticas del pasado y del futuro. Entonces, cuando se trata de matemáticas, al igual que en las amistades, harás bien en encontrar los centros y maximizar tu título.

Ejercicios
  1. ¿Cómo sería una red de amistad si cada persona tuviera exactamente dos amigos?
  2. En Regulartown cada persona puede tener hasta cuatro amigos. Es posible que se formen camarillas en Regulartown, pequeños grupos en los que cada persona tiene exactamente cuatro amigos. ¿Cuántas personas podrían estar en tal pandilla? (Sugerencia: la respuesta está relacionada con un sólido platónico).
  3. Nuestras redes de amistad confían en que la amistad sea una relación simétrica, es decir, si A es amigo de B, entonces B es amigo de A. ¿Cómo podríamos ajustar nuestro modelo de red para adaptarse a una noción no simétrica de amistad, donde A podría ser amigo de B pero B no ser amigos con A?
  4. En Friendville, todos son amigos de todos los demás. Si hay n personas en Friendville, ¿cuántas amistades hay?





jueves, 10 de enero de 2019

Introducción al análisis de redes organizacionales (ONA)


Análisis de redes organizacionales.

Obtenga una visión, conduzca con inteligencia


Visualizar y analizar las relaciones formales e informales en su organización puede ayudarlo a diseñar una estrategia comercial que maximice el intercambio orgánico de información, lo que ayudará a que su empresa sea más sostenible y eficaz.


Delloite


Ver más allá del organigrama


En cada organización, las personas construyen equipos informales de asistencia. Confían en esa persona que siempre sabe "cómo hacemos las cosas aquí". Encuentran a alguien en finanzas que puede responder a cualquier pregunta sobre el presupuesto. Estas conexiones espontáneas y de importancia crítica son el alma de las organizaciones de todo el mundo.

El Análisis de redes organizacionales (ONA) es una forma estructurada de visualizar cómo las comunicaciones, la información y las decisiones fluyen a través de una organización. Las redes organizativas consisten en nodos y vínculos, la base para comprender cómo fluye la información en su organización, puede fluir y debería fluir.

Análisis de red organizacional (ONA) explicado


Cada organización tiene personas (nodos) que sirven como conductos críticos para el intercambio de ideas e información (Figura 1). Una conexión entrega valor cuando se intercambia información necesaria.
  • Nodo central: estas son las personas que parecen conocer a todos. Los nodos centrales comparten mucha información e influyen en los grupos rápidamente. Los nodos centrales pueden estar en cualquier lugar en la jerarquía de una organización, a menudo son muy apreciados y están muy comprometidos con las noticias y desarrollos de la compañía.
  • Agente de conocimiento: estas personas crean puentes entre grupos. Sin intermediarios de conocimiento, la información y el intercambio de ideas se detienen.
  • Periférico: Los periféricos de alto potencial, que son fácilmente pasados ​​por alto y desconectados del resto de la empresa, pueden ser un riesgo para las organizaciones. Los excepcionales programadores de Java que no enseñan a los demás las mejores prácticas no solo estancan el desarrollo del producto, sino que también se convencen fácilmente de llevar sus talentos a otra parte.
  • Lazos: Los lazos son las relaciones formales e informales entre nodos. El establecimiento de vínculos relacionales óptimos entre los nodos centrales y los agentes de conocimiento ayuda a garantizar que la información útil se mueva fácilmente entre los grupos y dentro de ellos.

Estos nodos y lazos son los elementos centrales de ONA. La visualización de las relaciones entre nodos y vínculos hace que sea mucho más fácil identificar las conexiones críticas y las posibles barreras al flujo de información y la colaboración. ONA revela dónde los nodos centrales podrían tener el mayor impacto, por ejemplo, en grupos que "no hablan mucho", o donde debería crear conexiones más sólidas para agilizar el intercambio de información y eliminar la redundancia.

Figura 1: actores de muestra



Al identificar y administrar los nodos centrales de manera adecuada, el cambio se puede adoptar de manera más rápida y generalizada, lo que ayuda a limitar las interrupciones costosas mientras la organización está alineada con la estrategia empresarial.


Desbloquea el poder de las redes.


Aumentar la efectividad operacional.

Los organigramas formales a menudo se parecen poco a la red de personas que realmente ejecutan el trabajo. ONA puede ofrecer información valiosa durante el diseño organizativo, facilitando el establecimiento de estructuras futuras que posicionen a los empleados donde puedan brindar el mayor impacto.

Transformar las organizaciones de una manera más inteligente.

Muy a menudo, los líderes identificados en un organigrama no son los verdaderos centros del flujo de información o son percibidos como personas a las que "acudir". Es fácil confiar en la palabra de boca y en las heurísticas de gestión para identificar a las personas para que actúen como agentes de cambio durante la implementación y transformación de una nueva organización. Pero con más frecuencia que no, las personas identificadas a través de estos enfoques no son los líderes "reales". ONA aumenta las posibilidades de que los líderes naturales de su organización estén a bordo y la transformación logre los objetivos previstos.

Usa el talento eficientemente

El trabajo real del día a día no puede ser representado completamente por un título de trabajo o capturado en un chat de organización. ONA puede revelar qué posiciones y unidades están interactuando para realizar el trabajo.
  • Claridad funcional: ¿Están todos los recursos de infraestructura de TI alineados con su grupo de TI compartido? ¿Son los empleados de finanzas los únicos que ejecutan actividades de cierre de libros al final del año? La realización de una ONA puede exponer el verdadero costo de los recursos de las actividades, así como el trabajo real realizado bajo cada título de trabajo. ONA proporciona una perspectiva nueva e informada para definir el estado futuro de las funciones y actividades, desde el nivel de departamento hasta el contribuyente individual.
  • Definición de roles: ONA muestra dónde comienza, se detiene y se detiene el trabajo. Esto puede proporcionar información valiosa sobre el estado actual y futuro de la toma de decisiones y el gobierno de su organización, y hace que sea más fácil ver cómo integrar a las personas adecuadas en el flujo. Por ejemplo, durante la actividad de fusiones y adquisiciones, los títulos de trabajo inexactos o definidos de manera diferente pueden hacer que los roles parezcan diferentes cuando en realidad son los mismos. A través de ONA, las organizaciones pueden ayudar a identificar la redundancia de roles dentro de una red, potencialmente liberando talento para completar más actividades de valor agregado.

Usar ONA para informar los esfuerzos de diseño de la organización puede ayudar a:

  • Aumente la efectividad operativa al construir una organización que está estructurada para aumentar la colaboración y el intercambio de información entre las personas adecuadas.
  • Transforme las organizaciones de una manera más inteligente mediante la identificación de líderes formales e informales con los que se puede contar para facilitar el cambio y ayudar a acelerar la realización de los beneficios de la transformación.
  • Use el talento de manera más efectiva minimizando la confusión de roles y la redundancia.

domingo, 6 de enero de 2019

Investigaciones de redes: Mensaje a los interesados

Puente hacia los lectores e investigadores del blog


Hola a los lectores del blog.

Me gustaría compartir en esta entrada del blog las áreas de investigación en redes en las cuales estoy abocado. La idea es, si a los lectores les parece, iniciar un intercambio entre todos quienes se hallen iniciando o ya estén abocados a una investigación en análisis de redes sociales o ciencia de redes para que podamos compartir experiencias.

Creo fervientemente que es una buena idea posibilitar un intercambio entre quienes les interese esta temática para, precisamente, crear enlaces y mantenerlos de manera que esta área del conocimiento se sigan nutriendo de nuestros aportes, dudas, intereses y motivaciones.

En ese sentido, también invito a quiénes estén investigando que publiquen en el blog los avances, las propuestas de investigación, las dudas respecto al qué, cómo, cuando, por qué de su investigación de modo que podamos crear una comunidad de intercambio. Creo que es un momento interesante para implementar lo que se lee en el blog, discutirlo y comenzar entre los interesados a crear redes de investigación de redes, por más que suene recursivo.

Primero una breve historia personal. Básicamente, todas mis tesis han sido sobre redes. Mi primera tesis de master en administración fue sobre un trabajo de campo que lamentablemente no se pudo realizar por falta de financiamiento pero que derivó en un survey de literatura que se publicó en 2006 en la tan amada revista Redes. El tema de investigación era el uso de capital humano y capital social en la efectividad de la profesión de abogado. En paralelo perseguía mi tesis doctoral en economía, la cual se abocó a la implementación de teoría de juegos a la formación de redes, desde un punto de vista muy teórico (ergo, ecuaciones y deducciones sobre teoría de grafos y equilibrios de Nash... algo muy poco atrayente para el público aunque sumamente interesante). Finalmente, implementé estos modelos teóricos en una tesis de master en computación científica unos cinco años más tarde utilizando un algoritmo evolutivo para que "jugara" con los equilibrios teóricos deducidos en mi tesis doctoral.

Redes de páginas de Facebook de discos de Bahía Blanca, 2015

Para todo estos trabajos no utilicé mucho el análisis de redes sociales (ARS) tradicional en sí mismo. El material de la tesis doctoral y de la tesis de master en computación no era uno que atrayera a estudiantes de posgrado por su complejidad y dificultad así que empecé a armar un curso de posgrado en ARS en el departamento de Economía de la Universidad Nacional del Sur. Es un curso tradicional inspirado en su composición de temas en un curso que dictaba el gran Jose Luis Molina en la Autónoma de Barcelona, junto con material de otro curso de redes en economía de Mark Mobius de Harvard y el también genial curso que dictó Lada Adamic en Coursera, con una introducción magnífica que propone el libro de los franceses Degenne y Forsé. Ese fue siempre el marco del curso que dicté en la UNS el cual espero ponerlo online durante 2019.

Los trabajos de investigación míos en redes actualmente son todos aplicados con datos de Argentina. Debo retomar en algún momento los modelos teóricos pero será al final de este año.
  • Actualmente nos hallamos abocados con la doctora Laura del Valle (UNS) a la investigación de las redes sociales de las familias capitulares del Cabildo de Buenos Aires durante el período del Virreinato del Río de la Plata (1776-1810). Las familias capitulares comprenden los grupos familiares (con actores consanguíneos y rituales) de miembros integrantes del Cabildo (de allí el adjetivo capitular). Actualmente contamos con 3 publicaciones indexadas de nuestras investigaciones y hemos ampliado la base de datos de 550 miembros a 1990 miembros por lo que esperamos en 2019 ampliar los resultados obtenidos hasta ahora. Investigamos que rol ha desempeñado la posición al red de cada individuo y de cada grupo familiar en la posibilidad de incluir un miembro dentro la composición del Cabildo, los cuales eran cargos "electivos". Encontramos que los individuos con mayor grado y menor autovector y las familias con mayor grado alcanzaron las posiciones más altas del Cabildo aunque desempeñando menos períodos en el cargo. Ello se enmarca en una institución que valoraba mucho el status social de sus miembros (muchos enlaces) y donde la experiencia en el trabajo era menos meritoria (menor tiempo en el cargo). Nuestro sendero de investigación comprende este año:
    • Evaluar el rol de las mujeres de la red en términos de determinar la posibilidad de elección de un miembro en el concejo
    • Evaluar el rol de la posición en la red en la posibilidad de aprobar o no ciertas regulaciones específicas sujetas a votación del Cabildo.
    • Corroborar si el uso de centralidades combinadas ayuda a detectar actores más influyentes en diversos políticos específicos del Cabildo.


  •  La segunda vía de investigación comprende el análisis de una gran base de datos de páginas de Facebook capturadas a lo largo de todo un año en la ciudad de Bahía Blanca. La misma comprende 325 páginas-redes, con más de 90 mil nodos y 4 millones de enlaces. Este trabajo lo estamos iniciando con Emiliano Gutiérrez como parte de su tesis doctoral. Esperamos obtener métricas estructurales, métricas individuales y la detección de actores principales, en primer lugar.  Una vez avanzado en este paso, esperamos realizar un análisis de sentimiento y lingüistico según género y sector económico e institucional de la página. Una tercera vía es una vez pasadas las fases anteriores, comprende detectar específicamente por geografía urbana los actores y sectores más vulnerables socioeconómicamente de la red y enfocarnos en un análisis diferencial de esta categoría de actores respecto al resto (¿de qué hablan? ¿cómo se expresan? ¿qué buscan en la red?, entre otras)
  • Una tercera vía han sido redes de coautoría y temáticas. Una maneran natural ha sido para mi descargar la información del principal congreso de economía de Argentina del sitio de la Asociación Argentina de Economía Política (AAEP). Actualmente ya hay una publicación del mismo y representa una forma muy natural de crear redes a través de eventos (redes bipartitas).
  • Finalmente por ahora, tengo en agenda modelos teóricos de juegos de formación de redes y modelos macroeconómicos con redes así como el uso de redes de correlación como herramienta de trabajo para reducir la dimensionalidad de bases de datos con muchas variables. Estos trabajos están en fase de inicio de working paper. Asimismo trabajo en procesos de difusión en redes sociales en línea aplicadas al marketing (una publicación indexada).
Bien hasta aquí lo mío. Me gustaría a los que les interese compartir en qué están trabajando, qué dudas tienen, qué temas les gustaría investigar, cómo llegaron al enfoque de redes en su vida académica, que compartan el material, que compartan sus experiencias académicas y sus dudas.
  • Les propongo contactarse conmigo vía email: jlarrosa@uns.edu.ar
  • A los interesados en presentar sus proyectos de investigación puedo habilitarlos como coautores del blog para que suban y armen sus propias entradas, en colaboración conmigo sobre todo en el tema de subir los gráficos y tablas y el etiquetado de los trabajos.
  • Proponer otras formas de conectarnos y discutir tópicos de redes... La redes sociales en línea facilitan mucho estos desafíos.

Bien, por ahora un gusto contactarme directamente con ustedes y que sea para bien de todos y, sobre todo, para mejorar nuestro entendimiento de cómo las redes modelan nuestras vidas.
 

Juan MC Larrosa

viernes, 4 de enero de 2019

Facebook reduce la brecha de género y educativa

El uso de Facebook está vinculado a la igualdad de género

La actividad de las redes sociales puede reducir el desequilibrio de poder masculino-femenino.


Por Matthew Hutson | Scientific American



Además de ofrecer videos de gatos e imágenes de bebés, las redes sociales pueden proporcionar información demográfica útil. Un nuevo estudio encuentra que, en todo el mundo, el uso de Facebook por parte de las mujeres está asociado con una mayor igualdad de género.

Los investigadores analizaron los datos anónimos de 1.400 millones de usuarios en 217 países, territorios y regiones autónomas y calcularon la proporción de mujeres y hombres de 13 a 65 años que utilizaron activamente la red social. Se consideró que los lugares con un índice de uso menor entre mujeres y hombres, como Afganistán, tenían una mayor "brecha de género en Facebook" (gráfico y mapa). El equipo también recopiló datos del Foro Económico Mundial sobre la igualdad de género de los países en términos de oportunidades económicas, educación y salud. El estudio descubrió que cuanto más pequeña era la división de género en Facebook de un país en 2015, mayor era la igualdad económica de género el año siguiente. En contraste, un aumento en la igualdad de género en la economía en 2015 no se asoció con una reducción en la brecha de género en Facebook durante el 2016. Este hallazgo sugiere que una brecha de género más pequeña en Facebook es más probable que contribuya a la igualdad de género en la economía, y no como resultado de esta. . Los resultados se publicaron en julio en las Actas de la Academia Nacional de Ciencias de EE. UU.

Ridhi Kashyap, un demógrafo de la Universidad de Oxford, que no participó en el estudio, publicó un mapa separado de la brecha de género en Internet, también utilizando datos de Facebook. Encontró que las brechas de género en el uso de Facebook demostraron ser una buena medida de las brechas de género en el uso de Internet en general; los datos sobre este último a menudo no están disponibles. Kashyap dice que Internet puede proporcionar a los usuarios información valiosa sobre salud y empleo y "también puede ser una excelente manera de mejorar las habilidades". David Garcia, científico computacional de la Universidad Médica de Viena y autor principal del estudio PNAS, dice Facebook los datos podrían ayudar a los responsables de las políticas a estimar la desigualdad de género en los países pobres y podrían seguir su evolución a diario.


La brecha de género en Facebook vs. la brecha educativa

Los investigadores compararon los valores de la División de Género de Facebook (FGD) con los índices de brecha de género del Foro Económico Mundial para cada país o región y encontraron un vínculo particularmente fuerte con la desigualdad en la educación.El gráfico incluye solo países y regiones para los cuales hay datos disponibles para ambas medidas.




Crédito: Amanda Montañez; Fuentes: "Análisis de la desigualdad de género a través de los datos publicitarios de gran escala de Facebook", por David Garcia et al., En Actas de la Academia Nacional de Ciencias de EE. UU., Vol. 115, No. 27; 3 de julio de 2018 (datos de brecha de género en Facebook); The Global Gender Gap Report 2016. World Economic Forum, 2016 (datos de brecha de género en educación)

miércoles, 2 de enero de 2019

Los efectos positivos y negativos de la presión de grupo

La razón extraordinaria por que las personas excepcionales evitan a los amigos mediocres (recompensan a tu cerebro)

Tu multitud literalmente te hace ver el mundo de manera diferente.


Por Mithu Storoni, autor de 'Stress-Proof'
@StoroniMithu
INC 




CREDITO: Getty Images

Les dicen a los empresarios que son solitarios, y que los visionarios lo hacen solos. Para tener éxito, has escuchado que debes dejar a los detractores y rodearte de otros que piensan como tú. ¿Hay realmente alguna verdad a esto? ¿Cuál es la ciencia detrás de por qué la multitud correcta puede impulsarnos hacia adelante, mientras que la multitud equivocada nos frena?

Una línea recta puede encogerse o crecer.

Cuando Solomon Asch, un psicólogo de Swarthmore College en la década de 1950, le pidió a un grupo de voluntarios que estimaran la longitud de una línea negra vertical en una tarjeta blanca llana, hizo una observación intrigante. Encontró que la estimación de cada persona variaba dependiendo de lo que todos los demás pensaban. Una persona rodeada de personas que sobreestimaron su longitud también la sobreestimó. Lo mismo era cierto para la subestimación. La gente literalmente veía la línea de manera diferente dependiendo de quién estaba a su alrededor.

¿Cómo puede una línea negra verse diferente dependiendo de las opiniones de otros? Asch estaba simplemente confirmando lo que Gustave Le Bon había escrito hace más de medio siglo, en su tratado seminal The Crowd: A Study of the Popular Mind, un estudio que se dice fue leído por Lenin, Mussolini y Hitler. Le Bon escribió que en una multitud "los sentimientos e ideas de todas las personas toman una misma dirección y su personalidad consciente desaparece".

¿Qué está pasando en tu cerebro?

Cuando tienes una opinión, una idea o un deseo que coincide con los de las personas que te rodean, el camino de la recompensa de tu cerebro se hace cosquillas y te sientes bien.

Si, por otro lado, su opinión, idea o deseo es diferente de los de las personas que lo rodean, una parte de su cerebro que se dispara cuando siente dolor (la ínsula anterior) se activa. Cuando esto sucede, haces una de dos cosas:
  1. Opción A: pretendes estar de acuerdo con los demás, pero continúas guardando tus propios pensamientos en secreto.
  2. Opción B: tu cerebro cambia activamente tu forma de pensar y moldea tus pensamientos más íntimos para alinearlos con los de tu público.

Un artículo reciente sugiere que puede estar usando la opción B más a menudo de lo que cree.

Una red dentro de su cerebro (que involucra la corteza frontal medial y la ínsula anterior) controla los "errores" en la forma en que se conforma con las personas que lo rodean. Se vuelve activo tan pronto como usted y su grupo no están de acuerdo en algo y anuncian los esfuerzos de su cerebro para tratar de reducir esta brecha de desacuerdo.

Un estudio ha demostrado cómo esta red se activa antes de que las personas cambien sus creencias más íntimas para que coincidan con las creencias que aparentemente sostienen.

Lo que esto significa para ti

Incluso si tienes una brillante y racha innovadora dentro de ti, corres el riesgo de abandonar tus ideas empresariales, cambiar tus creencias y rendirte al pesimismo de los detractores si estás rodeado de ellos.

En cambio, si se rodea de empresarios optimistas y enérgicos que aspiran a tener éxito, es probable que cambie sus pensamientos más íntimos para pensar como ellos y se vuelva más emprendedor, incluso si nunca antes ha tenido ideas empresariales.

Si tu multitud puede cambiar tus pensamientos más íntimos, puede cambiar quién eres. Cuando escoges a las personas con las que quieres estar, eliges a la persona que quieres que sea, elige sabiamente.

domingo, 30 de diciembre de 2018

Redes, enfermedades y la difusión de innovaciones para el crecimiento económico

Crecimiento, enfermedad y el toque personal.

Las conexiones sociales conducen a un mayor crecimiento económico a través de la difusión de la tecnología. Pero las redes también propagan patógenos, con efecto contrario.

Douglas Clement | Federal Reserve Bank of Minneapolis



"La difusión de una innovación se convierte en un proceso formalmente similar a la propagación de una enfermedad infecciosa".
Premio Nobel Kenneth Arrow


Si no hemos aprendido nada más de las redes sociales, es que las redes transmiten el bien y el mal. Las redes sociales desempeñan un papel similarmente ambivalente en la economía. Al difundir ideas y tecnología, las redes ayudan a transformar las economías de subsistencia a prosperidad. Pero las conexiones sociales también propagan enfermedades, desde el resfriado común hasta el ébola endémico.

Las interacciones de la enfermedad, el ingreso, la innovación y las redes son multidireccionales. La tecnología puede proteger y curar con mejores medicamentos y dispositivos médicos. La enfermedad generalizada reduce el crecimiento económico al perjudicar la productividad. Las redes están conformadas por la tecnología y la enfermedad. Crecen a través de nuevos métodos de transporte y comunicación. Pero para sobrevivir al contagio, las sociedades pueden restringir las redes para reducir la transmisión de enfermedades; la cuarentena es un claro ejemplo.

Comprender cómo las redes afectan el progreso tecnológico y el crecimiento económico es, por lo tanto, un intrincado rompecabezas, acosado por los desafíos de la causalidad inversa. Pero "Germs, Social Networks, and Growth", un informe reciente del personal (SR572) de Alessandra Fogli, directora asistente de investigación de desigualdad y asesora monetaria de la Fed de Minneapolis, y Laura Veldkamp de la Universidad de Columbia ofrece una solución elegante: desenmarañamiento de enfermedades, desarrollo , y datos demográficos y proporciona un modelo analítico que cuantifica el efecto de las redes en el ingreso nacional, pero también explica por qué las sociedades adoptan estructuras que inhiben el crecimiento.
Al difundir ideas y tecnología, las redes ayudan a transformar las economías de subsistencia a prosperidad. Pero las conexiones sociales también propagan enfermedades, desde resfriados hasta ébola.

Su modelo muestra que las pequeñas diferencias iniciales en el entorno epidemiológico de una nación (tasas de enfermedad o capacidad de contagio) pueden dar lugar a grandes y persistentes diferencias en la estructura de la red que, a su vez, generan niveles muy diferentes de difusión tecnológica y de producción económica. Cambiar la red social de una nación puede aumentar su productividad y crecimiento hasta en un 100 por ciento, según sus estimaciones. Pero si se hace en un entorno de alta enfermedad, el crecimiento se verá afectado por una propagación paralela de la enfermedad.

"En general, las redes sociales han evolucionado para adaptarse a su entorno económico y epidemiológico", escriben Fogli y Veldkamp. "Tratar de cambiar las redes en un país para imitar a las de un país con ingresos más altos puede ser contraproducente".

Un modelo evolutivo

El núcleo de su investigación es un modelo de difusión de red, un marco que les permite medir el efecto de las redes en el crecimiento. Las redes sociales tienen innumerables dimensiones; los economistas se centran en aquellos que son medibles y que median la difusión de la tecnología, pero también responden a la enfermedad. En este modelo, las redes gobiernan la propagación de enfermedades y tecnologías, pero, inversamente, las enfermedades y las tecnologías influyen en la evolución de las redes.

Las variables explicativas clave del modelo, entonces, son la prevalencia de la enfermedad, la adopción de tecnología y la difusión en red. Los datos nacionales para la prevalencia de enfermedades transmisibles son relativamente fáciles de obtener. Medidas de adopción de tecnología también están disponibles. Una métrica para redes sociales es más problemática. Los economistas desarrollan un índice a partir de tres elementos: movilidad, cantidad de vínculos sociales en ubicaciones a distancia; grado, número de conexiones personales cercanas; e individualismo / colectivismo, el nivel de agrupación de una sociedad. ¿Las conexiones personales son compartidas o independientes? ¿Los amigos tienden a tener un amigo mutuo?

Reuniendo datos sobre estas variables para 71 países y calibrando el modelo, Fogli y Veldkamp miden la relación entre la difusión de la red y el ingreso nacional. Encuentran, como se esperaba, una correlación muy alta. "Las fuerzas del modelo pueden explicar conjuntamente las grandes diferencias en los ingresos entre los países", escriben.

Un "experimento político"

Pero la estrecha correlación entre la difusión y el ingreso podría deberse a otros factores, en particular, el impacto de la enfermedad en ambos. Para aislar el papel causal de la difusión de la red, los economistas intentan, en esencia, un experimento político: mantener constante el entorno de la enfermedad, variar el nivel de difusión de la red y ver qué sucede con el crecimiento económico. (Todos los experimentos incluyen dos efectos de retroalimentación: sobre la innovación a medida que aumentan las tasas de infección y sobre la probabilidad de infección a medida que mejora la tecnología).

Su punto de referencia es Estados Unidos, que tiene una prevalencia de enfermedades muy baja (0.05 por ciento para las enfermedades transmisibles). En este entorno, encuentran, las redes de alta difusión tienen un impacto fuertemente positivo en el crecimiento económico. Duplicar el número de individuos altamente móviles o conectados eleva sustancialmente las tasas de crecimiento.
Cambiar la red social de una nación puede aumentar su productividad hasta en un 100 por ciento. Pero en un entorno de alta enfermedad, el crecimiento se verá afectado por una propagación paralela de la enfermedad.

Pero en un entorno de alta enfermedad (utilizando la prevalencia del 18 por ciento de Ghana), la alteración de la red social para facilitar una difusión más rápida reduce el ingreso nacional. Duplicar el número de individuos altamente conectados causa que la producción caiga en un 90 por ciento.

"La conclusión es que la forma en que las redes afectan el crecimiento económico depende del entorno de la enfermedad", escriben los economistas. Las redes de alta difusión propagan patógenos y empobrecen a las naciones en las que prevalece la enfermedad. En las naciones con baja enfermedad, las redes difusas tienen menos patógenos para propagarse. Las ideas se vuelven virales, no gérmenes. “Las mismas redes que empobrecen a los países pobres pueden facilitar el crecimiento de los ricos donde las epidemias son raras. Para prosperar, cada país necesita una red social que esté bien adaptada a su entorno ".

Orígenes de la red

La consulta principal de Fogli y Veldkamp es, según lo expresan, "sobre el efecto, no el origen, de las redes". Pero comprender cómo las redes emergen y evolucionan en respuesta a la enfermedad es clave para apreciar por qué la modificación de las redes puede ser peligrosa. En un ejercicio separado, los economistas, por lo tanto, realizan simulaciones por períodos múltiples de dos economías idénticas que varían solo en sus tasas iniciales de prevalencia de la enfermedad.

En entornos de baja enfermedad, las simulaciones generan redes de alta difusión porque los individuos conectados, independientes y móviles prosperan. Están expuestos a más ideas nuevas y disfrutan de mayores ingresos y mayores tasas de reproducción. "En entornos de baja enfermedad, las características de la red de alta difusión prosperan".
“Las redes que empobrecen a los países pobres pueden facilitar el crecimiento de los ricos donde las epidemias son raras. Para prosperar, cada país necesita una red social ... adaptada a su entorno ".

Pero en entornos de alta enfermedad, ocurre lo contrario: las personas con más amigos, mayor movilidad y mayor independencia se enferman rápidamente. "También pueden obtener nuevas ideas", observa Fogli y Veldkamp. Pero si están enfermos, son "improductivos, independientemente de [su] tecnología. Uno tiene que estar vivo y bien ser productivo ".

Entonces, nuevamente, cuando la enfermedad es común, alterar las redes puede ser una mala idea: “Cambiar la red sin cambiar el entorno de la enfermedad puede ser desastroso. Una red de alta difusión, en un lugar donde prevalecen las enfermedades, es una receta para las epidemias y las crisis humanitarias ".

Confirmación desde un segundo método.

Los economistas evalúan los hallazgos de su modelo mediante el uso de un segundo método, una técnica llamada "estimación de variables instrumentales". Emplea análisis de regresión con variables relacionadas con redes, enfermedades, tecnología y crecimiento, pero que no sufren la causalidad inversa inherente a su modelo. Con datos sobre nueve enfermedades transmisibles en 160 países, miden la diferencia en la prevalencia de las enfermedades transmitidas por los seres humanos y las transmitidas por los animales. Estas enfermedades tienen un impacto similar en la difusión de la tecnología, pero difieren en relación con las redes sociales, por lo que la causalidad inversa no es un problema.

Los hallazgos son tranquilizadores. Los resultados del conjunto completo de países muestran que el aumento del nivel de difusión de la red aumenta considerablemente la productividad de los trabajadores y el PIB per cápita. Pero dividir la muestra entre países con enfermedad alta y países con enfermedad baja "sugiere un mensaje más sutil que refleja los resultados del modelo", observan Fogli y Veldkamp. Como su método principal indica, los efectos de red difieren. "El efecto positivo de las redes sociales solo aparece en los países con baja prevalencia de enfermedad". Por lo tanto, las políticas para implementar redes sociales de alta difusión serían poco recomendables en los países donde las enfermedades contagiosas son comunes.

sábado, 29 de diciembre de 2018

Análisis de red de correlaciones ponderadas

Redes de correlación ponderadas

 Wikipedia




El análisis de red de correlación ponderada, también conocido como análisis de red de coexpresión de genes ponderados (WGCNA), es un método de minería de datos ampliamente utilizado, especialmente para el estudio de redes biológicas basadas en correlaciones de pares entre variables. Si bien se puede aplicar a la mayoría de los conjuntos de datos de alta dimensión, se ha utilizado más ampliamente en aplicaciones genómicas. Permite definir módulos (clústeres), concentradores intramodulares y nodos de red con respecto a la pertenencia a módulos, estudiar las relaciones entre los módulos de coexpresión y comparar la topología de red de diferentes redes (análisis diferencial de redes). El WGCNA se puede usar como una técnica de reducción de datos (relacionada con el análisis factorial oblicuo), como un método de agrupamiento (agrupamiento difuso), como un método de selección de características (por ejemplo, como método de detección de genes), como marco para integrar datos complementarios (genómicos) ( basado en correlaciones ponderadas entre variables cuantitativas) y como una técnica de exploración de datos. [1] Aunque WGCNA incorpora técnicas tradicionales de exploración de datos, su lenguaje de red intuitivo y su marco de análisis trascienden cualquier técnica de análisis estándar. Debido a que utiliza una metodología de red y es adecuada para integrar conjuntos de datos genómicos complementarios, puede interpretarse como un método de análisis de datos genéticos de sistemas biológicos o sistemas. Al seleccionar los centros intramodulares en los módulos de consenso, WGCNA también da lugar a técnicas de metanálisis basadas en redes. [2]


Historia

El método WGCNA fue desarrollado por Steve Horvath, profesor de genética humana en la Escuela de Medicina David Geffen en UCLA y de bioestadística en la Escuela de Salud Pública Fielding de la UCLA y sus colegas en la UCLA, y (ex) miembros del laboratorio (en particular Peter). Langfelder, Bin Zhang, Jun Dong). Gran parte del trabajo surgió de colaboraciones con investigadores aplicados. En particular, las redes de correlación ponderadas se desarrollaron en conversaciones conjuntas con los investigadores del cáncer Paul Mischel, Stanley F. Nelson y los neurocientíficos Daniel H. Geschwind, Michael C. Oldham (según la sección de reconocimiento en [1]). Existe una vasta literatura sobre redes de dependencia, redes de escala libre y redes de coexpresión.

Comparación entre redes de correlación ponderadas y no ponderadas

Una red de correlación ponderada puede interpretarse como un caso especial de una red ponderada, una red de dependencia o una red de correlación. El análisis de la red de correlación ponderada puede ser atractivo por los siguientes motivos.
  • La construcción de la red (basada en un umbral suave del coeficiente de correlación) preserva la naturaleza continua de la información de correlación subyacente. Por ejemplo, las redes de correlación ponderadas que se construyen sobre la base de correlaciones entre variables numéricas no requieren la elección de un umbral duro. La información dicotomizante y el umbral (difícil) pueden llevar a la pérdida de información. [3]
  • La construcción de la red tiene resultados altamente robustos con respecto a las diferentes opciones de umbral suave. [3] Por el contrario, los resultados basados ​​en redes no ponderadas, construidas por el umbral de una medida de asociación por pares, a menudo dependen en gran medida del umbral.
  • Las redes de correlación ponderadas facilitan una interpretación geométrica basada en la interpretación angular de la correlación, capítulo 6 en. [4]
  • Las estadísticas de red resultantes pueden utilizarse para mejorar los métodos estándar de extracción de datos, como el análisis de conglomerados, ya que las medidas de similitud (des) a menudo se pueden transformar en redes ponderadas; [5] ver capítulo 6 en [4].
  • WGCNA proporciona estadísticas de conservación de módulos potentes que pueden usarse para cuantificar si se pueden encontrar en otra condición. Además, las estadísticas de conservación de módulos permiten estudiar las diferencias entre la estructura modular de las redes. [6]
  • Las redes ponderadas y las redes de correlación a menudo se pueden aproximar mediante redes "factorizables". [4] [7] Tales aproximaciones a menudo son difíciles de lograr para redes dispersas y no ponderadas. Por lo tanto, las redes ponderadas (de correlación) permiten una parametrización parsimoniosa (en términos de módulos y membresía de módulos) (capítulos 2, 6 en [1]) y [8].

Método

Primero, uno define una medida de similitud de coexpresión de genes que se usa para definir la red. Denotamos la medida de similitud de coexpresión de genes de un par de genes i y j por . Muchos estudios de coexpresión utilizan el valor absoluto de la correlación como una medida de similitud de coexpresión sin signo,



donde los perfiles de expresión génica y consisten en la expresión de los genes i y j a través de múltiples muestras. Sin embargo, el uso del valor absoluto de la correlación puede ofuscar información biológicamente relevante, ya que no se hace distinción entre la represión de genes y la activación. En contraste, en las redes firmadas, la similitud entre los genes refleja el signo de la correlación de sus perfiles de expresión. Para definir una medida de coexpresión firmada entre los perfiles de expresión génica y , se puede usar una transformación simple de correlación:



Como la medida no firmada sijunsigned , la similitud firmada toma un valor entre 0 y 1. Tenga en cuenta que la similitud no firmada entre dos genes expresados ​​de manera opuesta ( es igual a 1 mientras que es igual a 0 para la similitud signada. De manera similar, mientras que la medida de coexpresión sin firmar de dos genes con correlación cero permanece en cero, la similitud con signo es igual a 0.5.

A continuación, se usa una matriz de adyacencia (red), , se utiliza para cuantificar la fuerza con que los genes están conectados entre sí. A se define mediante el umbral de la matriz de similitud de coexpresión . El umbral 'duro' (dicotomización) la medida de similitud S da como resultado una red de coexpresión de genes no ponderada. Específicamente, una adyacencia de red no ponderada se define como 1 si y 0 en caso contrario. Debido a que el umbral difícil codifica las conexiones genéticas de forma binaria, puede ser sensible a la elección del umbral y resultar en la pérdida de información de coexpresión. [3] La naturaleza continua de la información de coexpresión se puede preservar empleando un umbral suave, que da como resultado una red ponderada. Específicamente, WGCNA utiliza la siguiente función de potencia para evaluar la fuerza de su conexión:

,

donde la potencia β es el parámetro de umbral suave. Los valores predeterminados β = 6 y β = 12 se utilizan para redes sin firma y firmadas, respectivamente. Alternativamente, se puede elegir β utilizando el criterio de topología sin escala que equivale a elegir el valor más pequeño de β, de manera que se alcance la topología libre de escala aproximada. [3]

Dado que , la adyacencia de red ponderada está relacionada linealmente con la similitud de coexpresión en una escala logarítmica. Tenga en cuenta que un β de alta potencia transforma altas similitudes en adyacencias altas, mientras que empuja similitudes bajas hacia 0. Dado que este procedimiento de umbral suave aplicado a una matriz de correlación de pares conduce a una matriz de adyacencia ponderada, el análisis que sigue es Se denomina análisis de red de coexpresión de genes ponderados.

Un paso importante en el análisis centrado en el módulo es agrupar genes en módulos de red utilizando una medida de proximidad de red. En términos generales, un par de genes tiene una alta proximidad si está estrechamente interconectado. Por convención, la proximidad máxima entre dos genes es 1 y la proximidad mínima es 0. Normalmente, el WGCNA usa la medida de superposición topológica (TOM) como proximidad. [9] [10] que también se puede definir para redes ponderadas. [3] El TOM combina la adyacencia de dos genes y las fortalezas de conexión que estos dos genes comparten con otros genes de "terceros". El TOM es una medida altamente robusta de interconexión de red (proximidad). Esta proximidad se utiliza como entrada del agrupamiento jerárquico de enlaces promedio. Los módulos se definen como ramas del árbol de agrupamiento resultante utilizando el enfoque de corte dinámico de ramas. [11] A continuación, los genes dentro de un módulo dado se resumen con el módulo eigengene, que se puede considerar como el mejor resumen del modo estandarizado.El módulo eigengene de un módulo dado se define como el primer componente principal de los perfiles de expresión estandarizados. Los eigengenes definen biomarcadores robustos. [12] Para encontrar módulos que se relacionan con un rasgo clínico de interés, los módulos de eigengenes se correlacionan con el rasgo clínico de interés, lo que da lugar a una medida de significación de eigengene. Los eigengenes se pueden usar como características en modelos predictivos más complejos, incluidos los árboles de decisión y las redes bayesianas. [12] También se pueden construir redes de coexpresión entre módulos de eigengenes (redes de eigengene), es decir, redes cuyos nodos son módulos. [13] Para identificar los genes centrales intramodulares dentro de un módulo dado, se pueden usar dos tipos de medidas de conectividad. El primero, denominado , es definido en función de la correlación de cada gen con el respectivo módulo eigengene. El segundo, denominado kIN, se define como una suma de adyacencias con respecto a los genes del módulo. En la práctica, estas dos medidas son equivalentes. [4] Para probar si un módulo se conserva en otro conjunto de datos, se pueden usar varias estadísticas de red, por ejemplo. . [6]

Aplicaciones

WGCNA se ha utilizado ampliamente para analizar datos de expresión génica (es decir, datos de transcripción), por ej. para encontrar genes hub intramodulares. [2] [14]

A menudo se usa como un paso de reducción de datos en aplicaciones de sistemas genéticos donde los módulos están representados por "módulos eigengenes", por ejemplo [15] [16] Los eigengenes del módulo pueden usarse para correlacionar módulos con rasgos clínicos. Las redes Eigengene son redes de coexpresión entre módulos eigengenes (es decir, redes cuyos nodos son módulos). WGCNA se usa ampliamente en aplicaciones neurocientíficas, por ejemplo [17] [18] y para analizar datos genómicos, incluidos datos de micromatrices, [19] datos de RNA-Seq de células individuales [20] [21] datos de metilación del DNA, [22] datos de miRNA, conteos de péptidos [23] y datos de microbiota (secuenciación del gen 16S rRNA). 24] Otras aplicaciones incluyen datos de imágenes del cerebro, por ejemplo, datos funcionales de resonancia magnética. [25]

Paquete de software R

El paquete de software WGCNA R [26] proporciona funciones para llevar a cabo todos los aspectos del análisis de redes ponderadas (construcción de módulos, selección de genes centrales, estadísticas de conservación de módulos, análisis de redes diferenciales, estadísticas de redes). El paquete WGCNA está disponible en Comprehensive R Archive Network (CRAN), el repositorio estándar para paquetes del complemento de R.


Referencias

  1. Horvath S (2011). Weighted Network Analysis: Application in Genomics and Systems Biology. New York, NY: Springer. ISBN 978-1-4419-8818-8.
  2. Langfelder P, Mischel PS, Horvath S, Ravasi T (17 April 2013). "When Is Hub Gene Selection Better than Standard Meta-Analysis?". PLoS ONE. 8 (4): e61505. Bibcode:2013PLoSO...861505L. doi:10.1371/journal.pone.0061505. PMC 3629234. PMID 23613865.
  3. Zhang B, Horvath S (2005). "A general framework for weighted gene co-expression network analysis" (PDF). Statistical Applications in Genetics and Molecular Biology. 4: 17. CiteSeerX 10.1.1.471.9599. doi:10.2202/1544-6115.1128. PMID 16646834.
  4. Horvath S, Dong J (2008). "Geometric Interpretation of Gene Coexpression Network Analysis". PLoS Computational Biology. 4 (8): e1000117. Bibcode:2008PLSCB...4E0117H. doi:10.1371/journal.pcbi.1000117. PMC 2446438. PMID 18704157.
  5. Oldham MC, Langfelder P, Horvath S (12 June 2012). "Network methods for describing sample relationships in genomic datasets: application to Huntington's disease". BMC Systems Biology. 6: 63. doi:10.1186/1752-0509-6-63. PMC 3441531. PMID 22691535
  6. Langfelder P, Luo R, Oldham MC, Horvath S (20 January 2011). "Is my network module preserved and reproducible?". PLoS Computational Biology. 7 (1): e1001057. Bibcode:2011PLSCB...7E1057L. doi:10.1371/journal.pcbi.1001057. PMC 3024255. PMID 21283776
  7. Dong J, Horvath S (4 June 2007). "Understanding network concepts in modules". BMC Systems Biology. 1: 24. doi:10.1186/1752-0509-1-24. PMC 3238286. PMID 17547772
  8. Ranola JM, Langfelder P, Lange K, Horvath S (14 March 2013). "Cluster and propensity based approximation of a network". BMC Systems Biology. 7: 21. doi:10.1186/1752-0509-7-21. PMC 3663730. PMID 23497424
  9. Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabasi AL (2002). "Hierarchical organization of modularity in metabolic networks". Science. 297 (5586): 1551–1555. arXiv:cond-mat/0209244. Bibcode:2002Sci...297.1551R. doi:10.1126/science.1073374. PMID 12202830
  10. Yip AM, Horvath S (24 January 2007). "Gene network interconnectedness and the generalized topological overlap measure" (PDF). BMC Bioinformatics. 8: 22. doi:10.1186/1471-2105-8-22. PMC 1797055. PMID 17250769
  11. Langfelder P, Zhang B, Horvath S (2007). "Defining clusters from a hierarchical cluster tree: the Dynamic Tree Cut library for R". Bioinformatics. 24 (5): 719–20. doi:10.1093/bioinformatics/btm563. PMID 18024473
  12. Foroushani A, Agrahari R, Docking R, Chang L, Duns G, Hudoba M, Karsan A, Zare H (16 March 2017). "Large-scale gene network analysis reveals the significance of extracellular matrix pathway and homeobox genes in acute myeloid leukemia: an introduction to the Pigengene package and its applications". BMC Medical Genomics. 10 (1): 16. doi:10.1186/s12920-017-0253-6. PMC 5353782. PMID 28298217
  13. Langfelder P, Horvath S (2007). "Eigengene networks for studying the relationships between co-expression modules". BMC Systems Biology. 2007 (1): 54. doi:10.1186/1752-0509-1-54. PMC 2267703. PMID 18031580
  14. Horvath S, Zhang B, Carlson M, Lu KV, Zhu S, Felciano RM, Laurance MF, Zhao W, Shu Q, Lee Y, Scheck AC, Liau LM, Wu H, Geschwind DH, Febbo PG, Kornblum HI, Cloughesy TF, Nelson SF, Mischel PS (2006). "Analysis of Oncogenic Signaling Networks in Glioblastoma Identifies ASPM as a Novel Molecular Target". PNAS. 103 (46): 17402–17407. Bibcode:2006PNAS..10317402H. doi:10.1073/pnas.0608396103. PMC 1635024. PMID 17090670
  15. Chen Y, Zhu J, Lum PY, Yang X, Pinto S, MacNeil DJ, Zhang C, Lamb J, Edwards S, Sieberts SK, Leonardson A, Castellini LW, Wang S, Champy MF, Zhang B, Emilsson V, Doss S, Ghazalpour A, Horvath S, Drake TA, Lusis AJ, Schadt EE (27 March 2008). "Variations in DNA elucidate molecular networks that cause disease". Nature. 452 (7186): 429–35. Bibcode:2008Natur.452..429C. doi:10.1038/nature06757. PMC 2841398. PMID 18344982
  16. Plaisier CL, Horvath S, Huertas-Vazquez A, Cruz-Bautista I, Herrera MF, Tusie-Luna T, Aguilar-Salinas C, Pajukanta P, Storey JD (11 September 2009). "A Systems Genetics Approach Implicates USF1, FADS3, and Other Causal Candidate Genes for Familial Combined Hyperlipidemia". PLoS Genetics. 5 (9): e1000642. doi:10.1371/journal.pgen.1000642. PMC 2730565. PMID 19750004
  17. Voineagu I, Wang X, Johnston P, Lowe JK, Tian Y, Horvath S, Mill J, Cantor RM, Blencowe BJ, Geschwind DH (25 May 2011). "Transcriptomic analysis of autistic brain reveals convergent molecular pathology". Nature. 474 (7351): 380–4. doi:10.1038/nature10110. PMC 3607626. PMID 21614001
  18. Hawrylycz MJ, Lein ES, Guillozet-Bongaarts AL, Shen EH, Ng L, Miller JA, van de Lagemaat LN, Smith KA, Ebbert A, Riley ZL, Abajian C, Beckmann CF, Bernard A, Bertagnolli D, Boe AF, Cartagena PM, Chakravarty MM, Chapin M, Chong J, Dalley RA, David Daly B, Dang C, Datta S, Dee N, Dolbeare TA, Faber V, Feng D, Fowler DR, Goldy J, Gregor BW, Haradon Z, Haynor DR, Hohmann JG, Horvath S, Howard RE, Jeromin A, Jochim JM, Kinnunen M, Lau C, Lazarz ET, Lee C, Lemon TA, Li L, Li Y, Morris JA, Overly CC, Parker PD, Parry SE, Reding M, Royall JJ, Schulkin J, Sequeira PA, Slaughterbeck CR, Smith SC, Sodt AJ, Sunkin SM, Swanson BE, Vawter MP, Williams D, Wohnoutka P, Zielke HR, Geschwind DH, Hof PR, Smith SM, Koch C, Grant S, Jones AR (20 September 2012). "An anatomically comprehensive atlas of the adult human brain transcriptome". Nature. 489 (7416): 391–399. Bibcode:2012Natur.489..391H. doi:10.1038/nature11405. PMC 4243026. PMID 22996553
  19. Kadarmideen HN, Watson-Haigh NS, Andronicos NM (2011). "Systems biology of ovine intestinal parasite resistance: disease gene modules and biomarkers". Molecular BioSystems. 7 (1): 235–246. doi:10.1039/C0MB00190B. PMID 21072409
  20. Kogelman LJ, Cirera S, Zhernakova DV, Fredholm M, Franke L, Kadarmideen HN (30 September 2014). "Identification of co-expression gene networks, regulatory genes and pathways for obesity based on adipose tissue RNA Sequencing in a porcine model". BMC Medical Genomics. 7 (1): 57. doi:10.1186/1755-8794-7-57. PMC 4183073. PMID 25270054
  21. Xue Z, Huang K, Cai C, Cai L, Jiang CY, Feng Y, Liu Z, Zeng Q, Cheng L, Sun YE, Liu JY, Horvath S, Fan G (29 August 2013). "Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing". Nature. 500 (7464): 593–7. Bibcode:2013Natur.500..593X. doi:10.1038/nature12364. PMC 4950944. PMID 23892778
  22. Horvath S, Zhang Y, Langfelder P, Kahn RS, Boks MP, van Eijk K, van den Berg LH, Ophoff RA (3 October 2012). "Aging effects on DNA methylation modules in human brain and blood tissue". Genome Biology. 13 (10): R97. doi:10.1186/gb-2012-13-10-r97. PMC 4053733. PMID 23034122
  23. Shirasaki DI, Greiner ER, Al-Ramahi I, Gray M, Boontheung P, Geschwind DH, Botas J, Coppola G, Horvath S, Loo JA, Yang XW (12 July 2012). "Network organization of the huntingtin proteomic interactome in mammalian brain". Neuron. 75 (1): 41–57. doi:10.1016/j.neuron.2012.05.024. PMC 3432264. PMID 22794259
  24. Tong M, Li X, Wegener Parfrey L, Roth B, Ippoliti A, Wei B, Borneman J, McGovern DP, Frank DN, Li E, Horvath S, Knight R, Braun J (2013). "A modular organization of the human intestinal mucosal microbiota and its association with inflammatory bowel disease". PLoS One. 8 (11): e80702. Bibcode:2013PLoSO...880702T. doi:10.1371/journal.pone.0080702. PMC 3834335. PMID 24260458
  25. Mumford JA, Horvath S, Oldham MC, Langfelder P, Geschwind DH, Poldrack RA (1 October 2010). "Detecting network modules in fMRI time series: a weighted network analysis approach". NeuroImage. 52 (4): 1465–76. doi:10.1016/j.neuroimage.2010.05.047. PMC 3632300. PMID 20553896
  26. Langfelder P, Horvath S (29 December 2008). "WGCNA: an R package for weighted correlation network analysis". BMC Bioinformatics. 9: 559. doi:10.1186/1471-2105-9-559. PMC 2631488. PMID 19114008.