Mostrando entradas con la etiqueta modelo basado en agentes. Mostrar todas las entradas
Mostrando entradas con la etiqueta modelo basado en agentes. Mostrar todas las entradas

miércoles, 13 de diciembre de 2017

Coordinación y estructura de red

Coordinación y Liderazgo en Conjuntos Humanos
Por Francesco Alderisio y Mario di Bernardo | SIAM News


Un importante problema abierto en el comportamiento humano es la comprensión de cómo la coordinación emerge en los conjuntos humanos. Los investigadores rara vez han estudiado este problema cuantitativamente en la literatura existente, en contraste con las situaciones de interacción dual, en las que dos individuos coordinan el movimiento del otro. Ejemplos de coordinación en grupos humanos incluyen deporte (por ejemplo, remar en equipo, patinaje sobre hielo, baile), multitudes ambulantes, audiencias que aplauden, conjuntos musicales y actuaciones colectivas.

Las principales preguntas abiertas buscan entender lo siguiente:
  1. Si el patrón de interacciones entre las personas afecta el nivel de coordinación del grupo
  2. Si un líder emerge espontáneamente para organizar el inicio de la coordinación
  3. Si se puede desarrollar un modelo matemático para captar la coordinación grupal
Abordar estos desafíos es fundamental en una serie de aplicaciones, incluyendo, el desarrollo de agentes virtuales para la rehabilitación de los trastornos sociales [3, 4], o el uso de la robótica social para programar agentes artificiales para interactuar mejor en un grupo de seres humanos.

1. En nuestro estudio, recientemente aceptado para su publicación en Scientific Reports - Nature, se analizó la coordinación motora (o sincronización) en un grupo de individuos. Se utilizó un caso paradigmático de estudio, en el que se pidió a los participantes que coordinaran visualmente un movimiento oscilatorio de la mano. Hemos probado por separado dos grupos de siete participantes cada uno, así como diferentes patrones de acoplamiento visual (es decir, quién mira a quién).

Por medio de los métodos de análisis de datos estadísticos, se muestra por primera vez, experimental y computacionalmente, que diferentes patrones de interacción visual en el grupo afectan el nivel de coordinación alcanzado por sus miembros, medido por el índice de sincronización de grupos, Ρg, tomando valores en el rango [Error de procesamiento matemático] [0,1] ([Error de procesamiento matemático] 0 correspondiente a ausencia de coordinación y [Error de procesamiento matemático] 1 para perfecta sincronización entre los participantes). Además, desarrollamos los efectos sobre la sincronización de grupos de heterogeneidades en las características individuales de movimiento de los participantes (medido en términos de la frecuencia intrínseca de oscilación que generan de forma aislada). Específicamente, mostramos que el nivel de coordinación alcanzado por los miembros del grupo está influenciado por la acción combinada de las características que caracterizan su movimiento en forma aislada (es decir, su frecuencia natural de oscilación) y las interconexiones específicas (es decir, estructura topológica) entre los jugadores. Por otra parte, encontramos que algunas topologías (por ejemplo, todo a todos) dan lugar a mayores niveles de sincronización independientemente de las diferencias individuales, mientras que para otras topologías (por ejemplo, las díadas consecutivas), una mejor sincronización se logra a través de una mayor homogeneidad en la Dinámicas individuales.



Resultados similares sobre los efectos de la estructura de los acoplamientos visuales entre los jugadores en su nivel de coordinación también se han obtenido en la ausencia de interacción social a través de un nuevo equipo basado en la puesta en marcha, como se ha sugerido recientemente en [2].

2. Otra cuestión importante y abierta es comprender si uno o más individuos del grupo asumen el papel de líder, dirigiendo el comportamiento de los demás hacia la sincronización. Para investigar esto, se desarrolló una metodología para reconstruir (a partir de datos de movimiento) una red ponderada dirigida que representa la interacción líder-seguidor entre los miembros del grupo [1]. Nuestros resultados preliminares sugieren que el surgimiento del liderazgo es un proceso muy sofisticado. Actualmente estamos investigando ese proceso en profundidad.

3. Finalmente, encontramos que al realizar nuestros experimentos de coordinación, el grupo se comporta como una red de osciladores heterogéneos acoplados no linealmente, a pesar de la complejidad de las interacciones sociales inevitables. El modelo también reproduce la dependencia del nivel de coordinación de cada individuo en el grupo sobre las propiedades intrínsecas de sus miembros y la estructura de interacción entre ellos, a pesar de los complejos mecanismos neuronales detrás del surgimiento de tal coordinación.

Nuestros hallazgos sobre la sincronización de grupos humanos son relevantes para cualquier actividad que requiera la coordinación de varias personas -como la música, el deporte o las situaciones en el lugar de trabajo- y puede extenderse para dar cuenta de otras formas perceptivas de interacción, tales como el sonido o la sensación. Por otra parte, la disponibilidad de una descripción matemática de la dinámica de los jugadores puede ser instrumental en el diseño de mejores arquitecturas conduciendo a agentes virtuales (por ejemplo, robots, avatares de computadora) para coordinar su movimiento dentro de grupos de humanos, así como para predecir la fuerza de acoplamiento necesaria para Restaurar la sincronización basada en el conocimiento inicial de la consistencia individual, la varianza del grupo y la topología.

Referencias

[1] Alderisio, F., Fiore, G., & di Bernardo, M. (2017). Reconstructing the structure of directed and weighted networks of nonlinear oscillators. Physical Review E, 95(4), 042302.
[2] Alderisio, F., Lombardi, M., Fiore, G., & di Bernardo, M. (2017), A Novel Computer-Based Set-Up to Study Movement Coordination in Human Ensembles. Frontiers in Psychology, 8(967).
 [3] [Słowiński, P., Alderisio, F., Zhai, C., Shen, Y., Tino, P., Bortolon, C.,…,Tsaneva-Atanasova, K.  (2017), Unravelling socio-motor biomarkers in schizophrenia. npj Schizophrenia, 3(8).
[4] [Słowiński, P., Zhai, C., Alderisio, F., Salesse, R., Gueugnon, M., Marin, L.,…,Tsaneva-Atanasova, K. (2016), Dynamic similarity promotes interpersonal coordination in joint action. Journal of The Royal Society Interface, 13(116), 20151093.

sábado, 17 de junio de 2017

ARS: Desarrollos, avances y perspectivas

Análisis de redes sociales: desarrollos, avances y perspectivas
John Scott -  Socian Networks Analysis and Mining

Resumen Este trabajo revisa el desarrollo del análisis de redes sociales y examina sus principales áreas de aplicación en sociología. Se examinan los acontecimientos actuales, incluidos los de fuera de las ciencias sociales, y se examinan sus perspectivas de progreso en el conocimiento sustantivo. En una sección final se examinan las implicaciones de las técnicas de extracción de datos y se destaca la necesidad de una cooperación interdisciplinaria si se quiere lograr un trabajo significativo.
Scott, J. SOCNET (2011) 1: 21. doi:10.1007/s13278-010-0012-6


1. El desarrollo del análisis de redes sociales

Los orígenes de un enfoque de la estructura social explícitamente utilizando las ideas de una "red social" son difíciles de discernir. El pensamiento estructural tiene raíces profundas en la tradición sociológica, pero en realidad sólo en los años treinta se expresó específicamente el pensamiento en red como un enfoque distinto de la estructura social.
Los teóricos sociales alemanes influenciados por Georg Simmel tomaron su énfasis en las propiedades formales de la interacción social para construir una "sociología formal", en la cual los sociólogos fueron obligados a investigar las configuraciones de relaciones sociales producidas por el entretejido de encuentros sociales. Alfred Vierkandt y Leopold von Wiese fueron los principales defensores de esta idea y adoptaron explícitamente una terminología de puntos, líneas y conexiones para describir las relaciones sociales. Sus ideas influyeron en un número de trabajadores en psicología social y psicoterapia que estaban interesados ​​en las formas en que las estructuras de grupos pequeños influenciaron las percepciones individuales y las opciones de acción. Lewin (1936) y Moreno (1934) fueron los principales contribuyentes a las investigaciones sobre el "campo" o "espacio" de las relaciones sociales y sus características de red (véase Bott1928). Fue Moreno quien dio a su enfoque el nombre de sociometría e introdujo la idea de representar las estructuras sociales como diagramas de red -sociogramas- de puntos y líneas. La sociometría se convirtió en un importante campo de investigación en la educación y la psicología social (Jennings, 1948), donde dio lugar al enfoque denominado "dinámica de grupo" (Cartwright y Zander, 1953; Harary y Norman 1953), fuertemente desarrollado en la Universidad de Michigan y en El Instituto Tavistock.
Este trabajo tuvo cierto impacto en la corriente principal de la sociología americana, gracias al trabajo de Lundberg (1936, Lundberg y Steele 1938), pero un desarrollo más fuerte del pensamiento de red comenzó cuando Lloyd Warner y Elton Mayo colaboraron en un estudio de la empresa de servicios eléctricos de Hawthorne en Chicago y fueron a investigar la estructura de la comunidad en ciudades y pueblos americanos. Basándose en las ideas que Radcliffe-Brown había tomado de la sociología de Durkheim, centraron su atención en la estructura de las relaciones de grupo y comenzaron a diseñar diagramas de red para representar esto. Pueden haber sido influenciados por las ideas sociométricas emergentes, pero el estímulo particular a esta forma de pensar puede haber sido los diagramas de cableado eléctrico que encontraron en la fábrica estudiada y que sirvió como una metáfora para las relaciones de grupo. Cualesquiera que sean sus orígenes, la idea de ver a los grupos sociales como redes de relaciones se estableció firmemente cuando su principal informe de investigación apareció una década después del comienzo de la investigación (Roethlisberger y Dickson, 1969). En un estudio de Newburyport, realizado entre 1930 y 1935, Warner desarrolló técnicas para representar las relaciones comunitarias a gran escala en forma de matriz como una representación de Lo que él llamó la "estructura de la camarilla" de la ciudad (Warner y Lunt, 1941). George Homans desarrolló estos métodos matriciales en su reanálisis de la pequeña camarilla (clique) de mujeres del sur estudiada por Warner en Natchez (Homans 1950). Estas dos tradiciones de investigación comenzaron a unirse en el trabajo antropológico llevado a cabo en la década de 1950 por investigadores de la Universidad de Manchester. Al intentar romper con las suposiciones de consenso de la sociología americana dominante y reconocer el conflicto y las divisiones dentro de la estructura de la comunidad, consideraron que el análisis de redes proporcionaba los medios para este fin. Fue Barnes (1954) quien propuso tomar la idea de una red de relaciones en serio, y sus argumentos fueron reforzados por el trabajo de Elizabeth Bott en Londres sobre redes de parentesco (Bott 1955, 1956). Al presentar sus ideas a los investigadores de Manchester inspiraron una declaración sistemática de Nadel (1957) y un programa de investigación sobre las comunidades africanas (Mitchell 1969b). El comentario de Mitchell sobre este trabajo (Mitchell 1969a) cuenta como uno de los primeros resúmenes sistemáticos de una metodología de red social formal. En el momento en que apareció el trabajo de Mitchell, sin embargo, varios investigadores estadounidenses también habían comenzado a desarrollar
Una metodología formal para el análisis de redes sociales. Harrison White había comenzado a explorar los usos del álgebra para representar las estructuras de parentesco (White1963), mientras que Edward Laumann (Laumann 1966) había comenzado a emplear métodos de escalamiento multidimensionales como una extensión del enfoque de Lewin al campo social. White se trasladó a la Universidad de Harvard y reunió a un grupo grande y dinámico de asociados para explorar los métodos de red (véase la discusión en Mullins 1973). Lee (1969) y Granovetter (1973, 1974) utilizaron métodos sociométricos extendidos para investigar, respectivamente, el aborto y el empleo, mientras que White y sus colegas desarrollaron métodos de análisis matricial para estudiar las relaciones sociales (White et al., 1976, Boorman y White, 1976). Fue de este grupo que una nueva generación de investigadores de redes sociales tomó este estilo de investigación en todo el mundo e influyó en el trabajo realizado en muchos países.
Lo más notable de los desarrollos en análisis de redes sociales fuera de Norteamérica fue el trabajo de Barry Wellman sobre la estructura de la comunidad en Canadá (Wellman y Berkowitz 1988), el trabajo de Frans Stokman y sus colegas sobre los patrones holandeses e internacionales de control corporativo (Helmers et al., 1975; Stokman et al., 1985), y mi propio trabajo sobre la propiedad y el control corporativos (Scott, 1979; Scott y Griff, 1984). Desde finales de los años setenta la cantidad de trabajo en la metodología del análisis de redes sociales ha aumentado masivamente, y la gama de aplicaciones impide cualquier resumen fácil. Los principales hitos metodológicos en el desarrollo del análisis de redes sociales son los principales estudios de Burt (1982), Freeman et al. (1989), y por Wasserman y Faust (1994), un volumen editado por Wasserman y Galaskiewicz (1994), un texto introductorio de Scott (2000, publicado originalmente en 1991) y una reciente colección editada por Carrington et al. (2005). Los desarrollos recientes y los avances se publicarán en el próximo Manual de análisis de redes sociales (Scott y Carrington2011).

2 Ideas centrales y aplicaciones de análisis de redes sociales

El enfoque predominante en el análisis de redes sociales hasta hace relativamente poco tiempo ha sido el enfoque matemático llamado teoría de los grafos. Esto todavía, discutible, proporciona el núcleo del análisis formal de la red social. La teoría de los grafos se originó en las investigaciones matemáticas emprendidas por Euler y proporciona un método para estudiar las redes ("grafos") de todo tipo. En el análisis de las redes sociales, los individuos y los grupos están representados por puntos y sus relaciones sociales están representadas por líneas, como en los sociogramas clásicos. La teoría de los grafos proporciona teoremas para analizar las propiedades formales de los sociogramas resultantes. Cuando los datos de la red se registran en forma de matriz, la teoría de los grafos puede operar directamente sobre las matrices sin necesidad de construir una representación visual real de los datos: una gran ventaja al manejar conjuntos de datos a gran escala. A las líneas de un grafo se les puede asignar una "dirección" para representar el flujo de influencia o recursos en una red social y se les puede asignar un "valor" para representar la fuerza de la relación.
Los teoremas de la teoría de grafos usan datos no dirigidos, dirigidos y valorados para construir medidas de la "densidad" global de una red y la "centralidad" relativa de varios puntos dentro de la red. Las medidas de centralidad se han utilizado típicamente como proxies para el poder y la influencia y han permitido la investigación de relaciones de arbitraje (Burt 2005). Un área importante de trabajo dentro de este enfoque ha sido la investigación de cliques y clusters, donde una variedad de medidas alternativas se han ideado para representar las divisiones estructurales dentro de una red social.

Junto a este trabajo ha sido un enfoque basado en la matriz que se origina en las ideas de Harrison White y Doug White, que se centra no en las propiedades de individuos y grupos sino en las características de las posiciones sociales, roles y categorías. Estos enfoques de posición -a veces denominados «modelos de bloques» - son métodos rigurosos de agrupamiento matricial que organizan las redes en posiciones jerárquicas del tipo que Nadel (1957) considera centrales para las preocupaciones teóricas de la sociología. Se han desarrollado varias medidas alternativas de la "equivalencia estructural" y la "sustituibilidad" de los individuos dentro de las posiciones sociales como formas de avanzar en este aspecto del análisis de redes sociales.

Estas ideas se han desarrollado en una serie de piezas generales y específicas de software. El más extendido en uso común ha sido UCINET, desarrollado inicialmente como una implementación de enfoques teóricos de grafos por Lin Freeman, Martin Everett, y otros en la Universidad de California, Irvine. Se ha ampliado en un programa general que maneja medidas posicionales y enfoques gráficos y ofrece una manera intuitiva y eficiente de realizar análisis de red. Más recientemente, PAJEK ha sido desarrollado por Vladimir Batagelj en la Universidad de Ljubljana como forma de manejar conjuntos de datos a gran escala y, en particular, utilizando métodos visuales de representación (véase De Nooy et al., 2005). También es capaz de realizar análisis generales de la estructura de la red y ahora se incluye como un subprograma dentro de UCINET.
Quizás el área principal, y también una de las áreas más tempranas, en las cuales se han aplicado técnicas de redes sociales, es el estudio de las relaciones de poder intercorporadas a través de la investigación de directorios entrelazados. Una de las principales áreas en las que se ha aplicado el análisis de redes sociales La investigación del poder corporativo y los directivos entrelazados. Varios estudios iniciales de escritores como Sweezy (1939) habían adoptado técnicas ad hoc para dibujar diagramas de red de conexiones a nivel de tablero y habían adoptado provisionalmente el lenguaje de redes y redes, especialmente en relación con la formación de camarillas. Durante las décadas de 1960 y 1970 estas sugerencias fueron promovidas en una serie de estudios realizados por analistas de redes en los Estados Unidos y luego en Europa, Australia y Japón. Bearden et al. (1975) elaboró ​​un documento que desarrolló la idea de la centralidad en las redes sociales como una forma de explorar el poder y la influencia de los bancos en el mundo empresarial estadounidense, mientras que Levine (1972) examinó el mapeo de los clusters asociados con Bancos y sus directores en el espacio social, utilizando técnicas de escalamiento multidimensional.
Las medidas clave desarrolladas en los Países Bajos (Helmers et al., 1975) se convirtieron en la base para una investigación de patrones transnacionales (Fennema 1982) y una investigación comparativa internacional (Stokman et al., 1985). Esto se amplió en una investigación comparativa de las redes intercomunales de accionistas (Scott1986) y dio lugar a numerosos estudios en diversas sociedades (véase la revisión en Scott 1997).
Una segunda gran tabla de análisis de redes sociales ha sido la investigación de la estructura de la comunidad. Esta área tiene una larga historia en las investigaciones llevadas a cabo por Lloyd Warner en pequeñas camarillas de ciudades y redes de negocios (Warner y Lunt, 1941) y en estudios antropológicos de comunidades tribales. En la década de 1960, un grupo de antropólogos asociados con los desarrollos en análisis de redes en la Universidad de Manchester comenzó una serie de estudios formales (Mitchell 1969b), pero fue Fisher (1977) y Wellman (1979) quienes generaron el trabajo que movió este campo En una dirección sistemática. Wellman emprendió una serie de investigaciones sobre la estructura cambiante de las relaciones comunales en una ciudad canadiense y examinó el papel de la amistad en la integración social. Se interesó particularmente en cambiar los medios de mantener el contacto y ha elaborado recientemente los medios electrónicos de comunicación como bases para las redes interpersonales (Wellman y Hogan, 2006). Este trabajo ha convergido recientemente con ideas sobre capital social que se desarrollaron a partir del trabajo de Putnam (2000). Las contribuciones más importantes a este trabajo han sido las reflexiones de Lin (2001) y Burt (2005, véase también Lin et al., 2001).
Numerosas otras aplicaciones, demasiado numerosas para citar aquí, han ampliado el análisis de redes sociales en redes políticas y de políticos, movimientos sociales, criminalidad y terrorismo, redes religiosas y en otros lugares. Muchas de estas áreas son revisadas en el próximo Manual Sage de Análisis de Redes Sociales (Carrington y Scott 2011)

3 Entran los físicos

Quizás el desarrollo más llamativo en el análisis de la red ha sido el crecimiento del interés aparente entre los físicos al aplicar las ideas de la red a los fenómenos sociales. En 1998, Duncan Watts y Steven Strogatz publicaron un artículo (Watts y Strogatz1998) que revisaba algunas de las ideas sobre redes aleatorias que habían surgido de la obra de Stanley Milgram sobre "mundos pequeños" (Milgram, 1969, Travers y Milgram, 1969). Tomando estas sugerencias y trabajos previos sobre redes aleatorias, teóricos como Barabasi (2002) y Watts (1999, 2003) propusieron lo que consideran nuevas áreas de aplicación al mundo social. Por desgracia, estos físicos han ignorado o han ignorado la gran cantidad de trabajo previo en las redes sociales y han propuesto investigaciones en, por ejemplo, redes de directorios sobre la base de que ninguno hasta ahora ha sido emprendido! La conciencia pública de las implicaciones del análisis de redes para investigar el mundo social ha sido fuertemente influenciada por las actividades de proselitismo de los físicos, y su trabajo es elogiado a menudo como nuevo e innovador por aquellos que son igualmente inconscientes del trabajo de los sociólogos (véase, Por ejemplo, Buchanan 2002).
Una revisión de estudios publicados por Freeman (2004) ha demostrado que el trabajo de los físicos rara vez ha citado el trabajo de los analistas de redes sociales y los analistas de redes sociales han sido reacios a comprometerse con el trabajo de los físicos. De hecho, un análisis de la red de patrones de citas muestra claramente una separación casi completa de los dos grupos.
Hay indicios de que esta división se está desmoronando, al menos en lo que respecta a los sociólogos. Watts se ha convertido a la sociología, pero Barabasi y otros influenciados por él persisten en ignorar el trabajo de los anteriores. Sin embargo, el trabajo de los físicos ha esbozado áreas de investigación que fueron subestimadas en análisis previos de redes sociales y un acercamiento será fructífero para ambas partes.
Un área clave destacada en el trabajo de los físicos ha sido la dinámica de redes y el cambio con el tiempo y sin duda ha sido un área que ha sido desarrollada sólo débilmente, si es que, por sociólogos que trabajan en análisis de redes sociales. Mucho trabajo sociológico ha sido estático o se ha ocupado simplemente de una secuencia de secciones estáticas de las redes, pero los métodos de los físicos prometen maneras de avanzar hacia los estudios adecuadamente dinámicos de la transformación de la red y la explicación de los procesos de red.

4 Áreas de avance

En el trabajo actual, se pueden identificar cuatro grandes áreas de avance. Estos son el uso de pruebas de significación estadística, el desarrollo de modelos de cambio longitudinal, la exploración de nuevos métodos de visualización y exploraciones en el contexto cultural de los modelos de redes sociales. Aunque ha habido algunos intentos de utilizar medidas estadísticas básicas de probabilidad y significación para probar hipótesis sobre la estructura de la red, sólo recientemente se han hecho avances significativos en esta área. Los procedimientos estadísticos estándar como las pruebas de significación, la regresión y el análisis de la varianza asumen la independencia de las observaciones, y esta suposición no concuerda con los datos típicos de la red. Por esta razón, se han requerido nuevas técnicas estadísticas, siendo el trabajo más importante el trabajo de Stanley Wasserman y sus colegas (Wasserman y Pattison, 1996, Pattison y Wasserman 1999, Robins et al.1999) para generalizar los grafos de Markov a una familia más grande de Modelos. Sus modelos de grafos aleatorios exponenciales -a veces denominados p* modelos- definen una distribución de probabilidad en el conjunto de todas las redes que se pueden construir en un conjunto dado de puntos usando vectores paramétricos específicos. Los grafos generados al azar varían a lo largo de todo el rango de completamente no conectados a completamente conectados, y log odds ratios de las probabilidades se utilizan para producir estimaciones de Monte Carlo que hacen posible una comparación de una red real con el conjunto de lógicamente posibles grafos con el fin de evaluar la probabilidad de su ocurrencia por casualidad.
Además de su enfoque descriptivo, gran parte del análisis de redes sociales también se ha concentrado en las características estáticas de las redes sociales. Esto también ha comenzado a cambiar en los últimos años, ya que se ha prestado más atención a los procesos dinámicos que intervienen en los cambios en el tiempo. Un avance clave en esta dirección ha sido el uso de modelos que ilustran las formas en que el comportamiento de los agentes individuales da lugar a transformaciones globales de la estructura de la red.
En los denominados modelos computacionales basados ​​en agentes, los agentes (ya sean individuos o grupos) son vistos como entidades que siguen las reglas, cuyas decisiones de actuar de una manera u otra son consecuentes para la red global en virtud de su concatenación con las consecuencias de la acción de otros . Por lo tanto, el conocimiento de las reglas bajo las cuales actúan los agentes puede ser utilizado para predecir patrones generales de cambio en la estructura de la red.
La búsqueda de explicaciones de cambio en el tiempo ha sido promovida por el desarrollo de una serie de métodos longitudinales que se han basado en modelos computacionales basados ​​en agentes (ver Monge y Contractor 2003). Tom Snijders (Snijders y van Duijn 1997, Snijders 2001, 2005) ha desarrollado un enfoque que ve el ajuste incremental de la acción individual a la estructura cambiante de la red, resultando en un proceso continuo pero a menudo no lineal de desarrollo de la red. Los agentes actúan «miopically», con sólo la concepción parcial de las consecuencias más amplias de sus opciones y los cambios que han resultado de sus acciones. Las redes evolucionan a través de la iteración continua de acciones y pequeños cambios incrementales pueden acumularse hasta un punto de inflexión en el que puede producirse una transformación no lineal en la estructura de la red. El trabajo actual en esta área está haciendo conexiones importantes con el trabajo temprano de Wasserman (Wasserman1980) y sus modelos exponenciales del grafos aleatorios. El enfoque general se ha implementado en el programa SIENA de Snijders para facilitar su uso.
La visualización de las redes sociales ha sido durante mucho tiempo una meta del análisis de redes sociales, originado en los primeros sociogramas. Sin embargo, una vez que las redes alcanzaron un tamaño mayor que un puñado de puntos, se hizo difícil dibujar sociogramas precisos y legibles. El deseo de recapturar el simple impacto visual del sociograma ha motivado el intento de investigar formas de dibujar diagramas de red que retengan los patrones espaciales inherentes a los datos relacionales. El escalamiento multidimensional emergió como uno de los primeros intentos de superar el revoltijo de líneas entrecruzadas y mostrar puntos según su distancia relativa en el espacio social. Las implementaciones de este enfoque ya están disponibles en los principales paquetes de software, y también están empezando a estar disponibles técnicas como el análisis de correspondencia múltiple. Freeman y otros, sin embargo, han estado explorando bases alternativas para la visualización, incluyendo aquellas que son capaces de prevenir imágenes en movimiento de cambio de red.
El trabajo teórico ha sido durante mucho tiempo subdesarrollado en análisis de redes sociales. Si bien los métodos en sí no requieren ni implican ninguna teoría sociológica en particular, requieren una contextualización teórica en debates más amplios. Los argumentos teóricos recientes más importantes han sido los que han retomado el trabajo de White (1992) en temas de cultura, identidad y agencia.

Ann Mische (Mische2003, véase también Mische 2007) ha desarrollado algunos argumentos interesantes que se basan en el trabajo realizado con Mustafa Emirbayer (Emirbayer y Mische1998). El mismo Emirbayer ha contribuido a un importante trabajo sobre el marco de la "sociología relacional" que él ve como el fundamento del análisis de redes sociales (Emirbayer y Goodwin, 1994).


5. Conclusión

El potencial de las técnicas de minería de datos para el análisis de las fuentes de datos disponibles está comenzando a ser reconocido a través de las ciencias sociales (ver Savage y Burrows 2007), y la formación de esta revista y de Avances en Análisis de Redes Sociales y Minería (ASONAM) es una marca De su potencial para el campo del análisis de redes sociales. Las nuevas técnicas de análisis de redes son las más apropiadas para conjuntos de datos a gran escala del tipo que generalmente no han sido posible investigar utilizando técnicas de análisis de redes sociales convencionales. Las técnicas de minería de datos permiten que tales conjuntos de datos sean examinados de manera que prometan nuevos avances en metodología y conocimiento sustantivo. Sin embargo, es importante que el uso de estas técnicas no conduzca a una reversión al trabajo puramente descriptivo. En los primeros tiempos de las técnicas computarizadas de análisis de redes sociales, la tendencia entre los investigadores era generar datos y "hallazgos" con poca o ninguna consideración de su importancia para cuestiones teóricas sustantivas.
Esto llevó a muchos observadores de las estadísticas y sociogramas producidos a responder "¿y qué?" Análisis de redes sociales luchó para madurar hasta el punto en que las preguntas analíticas se convirtió en el centro de las investigaciones y los datos se utilizó para probar y objetivos explicativos adicionales.
Sería un desastre si el uso de las nuevas técnicas de minería de datos nos devolviera a esa situación anterior, en la que los investigadores estaban más interesados ​​en patrones que en la interpretación sustantiva de esos patrones. Esto no debería ser un tiempo para los especialistas en metodología por sí solo para explorar determinados conjuntos de datos. Se debe aprovechar la oportunidad para la cooperación interdisciplinaria en la que aquellos con un conocimiento sustantivo de un campo particular pueden cooperar productivamente con especialistas técnicos para producir esos poderosos estudios analíticos y explicativos que pueden promover la agenda del análisis de redes sociales en los muchos campos sustantivos de Ciencias Sociales.

Referencias


  • Bearden J et al (1975) The nature and extent of bank centrality in corporate networks. In: Scott J (ed) Social networks, vol 3. Sage, London
  • Barabási A-L (2002) Linked: the new science of networks. Perseus, Cambridge
  • Barnes JA (1954) Class and Committee in a Norwegian Island Parish. Hum Relat 7:39–58
  • Boorman SA, White HC (1976) Social structure from multiple networks: II Am J Sociol 81:1384–1446
  • Bott H (1928) Observation of play activities in a nursery school. Genet Psychol Monogr 4:44–48
  • Bott E (1955) Urban families: conjugal roles and social networks. Hum Relat 8:345–384
  • Bott E (1956) Urban families: the norms of conjugal roles. Hum Relat 9:325–341
  • Buchanan M (2002) Small world: uncovering nature’s hidden networks. Weidenfeld and Nicolson, London
  • Burt RS (1982) Towards a structural theory of action. Academic Press, New York
  • Burt RS (2005) Brokerage and closure: an introduction to social capital. Oxford University Press, New York
  • Carrington PJ, Scott J (eds) (2011) Sage handbook of social network analysis. Sage, London
  • Carrington PJ, Scott J, Wasserman S et al (eds) (2005) Models and methods in social network analysis. Cambridge University Press, Cambridge
  • Cartwright D, Zander A (eds) (1953) Group dynamics. Tavistock, London
  • Clyde MJ (1969a) The concept and use of social networks. In: Mitchell JC (ed) Social networks in urban situations. Manchester University Press, Manchester
  • Clyde MJ (ed) (1969b) Social networks in urban situations. Manchester University Press, Manchester
  • De Nooy W, Mrvar A, Batagelj V (eds) (2005) Exploratory social network analysis with Pajek. Cambridge University Press, New York
  • Emirbayer M (1997) Manifesto for a relational sociology 103(2):281–317
  • Emirbayer M, Goodwin J (1994) Network analysis, culture, and the problem of agency 99:1411–1454
  • Emirbayer M, Mische A (1998) What is agency? Am J Sociol 103(4):962–1023
  • Fennema M (1982) International networks of banks and industry. Martinus Nijhof, Hague
  • Fischer CS (1977) Networks and places: social relations in the urban setting. Free Press, New York
  • Freeman LC (2004) The development of social network analysis: a study in the sociology of science. Empirical Press, Vancouver
  • Freeman LC, White DR, Romney AK (eds) (1989) Research methods in social network analysis. Transaction Books, New Brunswick
  • Granovetter M (1973) The strength of weak ties. Am J Sociol 78(6):1360–1380
  • Granovetter M (1974) Getting a job. Harvard University Press, Cambridge
  • Harary F, Norman RZ (1953) Graph theory as a mathematical model in social science. Institute for Social Research, Ann Arbor
  • Helmers HM et al (1975) Graven Naar Macht. Van Gennep, Amsterdam
  • Homans G (1950) The human group. Routledge and Kegan Paul, London
  • Jennings HH (1948) Sociometry in group relations. American Council on Education, Washington, DC
  • Laumann EO (1966) Prestige and association in an urban community. Bobbs-Merrill, Indianapolis
  • Lee NH (1969) The search for an abortionist. Chicago University Press, Chicago
  • Levine JH (1972) The sphere of influence. Am Sociol Rev 37:14–27
  • Lewin K (1936) Principles of topological psychology. Harper and Row, New York
  • Lin N (2001) Social capital: a theory of social structure and action. Cambridge University Press, New York
  • Lin N, Cook KS, Burt RS (eds) (2001) Social capital: theory and research. Transaction Press, New Brunswicvk, NJ
  • Lundberg G (1936) The sociography of some community relations. Am Sociol Rev 5(1):47–63
  • Lundberg GA, Steele M (1938) Social attraction-patterns in a village Sociometry 1:375–419
  • Milgram S (1967) The small world problem. Psychol Today 2:60–67
  • Mische A (2003) Cross-talk in movements: rethinking the culturenetwork link. In: Diani M, McAdam D (eds) Social movements and networks: relational approaches to collective action. Oxford University Press, Oxford
  • Mische A (2007) Partisan publics: communication and contention across Brazilian youth activist networks. Princeton University Press, Princeton, NJ
  • Monge PR, Contractor NS (2003) Theories of communication networks. Oxford University Press, Oxford
  • Moreno JL (1934) Who shall survive?. Beacon Press, New York
  • Mullins NC (1973) Theories and |theory groups in american sociology. Harper and Row, New York
  • Nadel SF (1957) The theory of social structure. Free Press, Glencoe
  • Pattison P, Wasserman S (1999) Logit models and logistic regressions for social networks: II. Multivariate relations. Br J Math Stat Psychol 52:169–193
  • Putnam RD (2000) Bowling alone: the collapse and revival of American community. Simon and Schuster, New York
  • Robins GL, Pattison P, Wasserman S (1999) Logit models and logistic regressions for social networks. III. Valued relations. Psychometrika 64:371–394
  • Roethlisberger FJ, Dickson WJ (1939) Management and the worker. Harvard University Press, Cambridge
  • Savage M, Burrows R (2007) The coming crisis of empirical sociology. Sociology 41(5):885–899
  • Scott J (1979) Corporations, classes and capitalism, 1st edn. Hutchinson, London
  • Scott J (1986) Capitalist property and financial power. Wheatsheaf Books, Brighton
  • Scott J (1997) Corporate business and capitalist classes. Oxford University Press, Oxford
  • Scott J (2000) Social network analysis, 2nd edn. Sage, London (Originally 1991)
  • Scott J, Carrington PC (eds) (2011) Handbook of social network analysis. Sage, London
  • Scott J, Griff C (1984) Directors of industry. Polity Press, Cambridge Snijders TAB (2001) The statistical evaluation of social network dynamics. In: Sobel ME, Becker MP (eds) Sociological methodology. Basil Blackwell, Oxford
  • Snijders TAB (2005) Models for longitudinal network data. In: Carrington PJ, Scott J, Wasserman S (eds) Models and methods in social network analysis. Cambridge University Press, Cambridge
  • Snijders TAB, van Duijn MAJ (1997) Simulation for statistical inference in dynamic network models. In: Conte R, Hegelmann R, Terna P (eds) Simulating social phenomena. Springer, Berlin
  • Stokman F, Ziegler R, Scott J et al (eds) (1985) Networks of corporate power. Polity Press, Cambridge
  • Sweezy PM (1939) Interest groups in the american economy. In: Sweezy PM (ed) The present as history. Monthly Review Press, New York
  • Travers J, Milgram S (1969) An experimental study of the small world problem. Sociometry 32(4):425–443
  • Warner WL, Lunt PS (1941) The social life of a modern community. Yale University Press, New Haven
  • Wasserman S (1980) Analyzing social networks as stochastic processes. J Am Stat Assoc 75:280–294
  • Wasserman S, Faust K (1994) Social network analysis: methods and applications. Cambridge University Press, New York
  • Wasserman S, Galaskiewicz J (eds) (1994) Advances in social network analysis. Sage, Beverley Hills
  • Wasserman S, Pattison P (1996) Logit models and logistic regressions for social networks: I. An introduction to Markov random graphs and p*. Psychometrika 60:401–426
  • Watts D (1999) Small worlds: the dynamics of networks between order and randomness. Princeton University Press, Princeton
  • Watts D (2003) Six degrees. The science of a connected age. W. W. Norton, New York
  • Watts DJ, Strogatz SH (1998) Collective dynamics of ‘‘small-world’’ networks. Nature 393:440–442
  • Wellman B (1979) The community question: the intimate networks of east yorkers. Am J Sociol 84:1201–1231
  • Wellman B, Berkowitz S (eds) (1988) Social structures. Cambridge University Press, New York
  • Wellman B, Hogan B (2006) Connected lives: the project. In: Purcell J (ed) Networked neighbourhoods. Springer, London
  • White HC (1963) An anatomy of kinship. Prentice-Hall, Englewood Cliffs
  • White H (1992) Identity and control. Princeton University Press, Princeton
  • White HC, Boorman SA, Breiger RL (1976) Social structure from multiple networks. I. Am J Sociol 81:730–780


lunes, 25 de marzo de 2013

Emjambres que ayudan a predecir conductas humanas


How the Science of Swarms Can Help Us Fight Cancer and Predict the Future

  • BY ED YONG

Wired


In the mid-2000s that lab was, however, one of the only places on earth to do the kind of science Couzin wanted. He didn’t care about locusts, per se—Couzin studies collective behavior. That’s swarms, flocks, schools, colonies … anywhere the actions of individuals turn into the behaviors of a group. Biologists had already teased apart the anatomy of locusts in detail, describing their transition from wingless green loners at birth to flying black-and-yellow adults. But you could dissect one after another and still never figure out why they blacken the sky in mile-wide plagues. Few people had looked at how locusts swarm since the 1960s—it was, frankly, too hard. So no one knew how a small, chaotic group of stupid insects turned into a cloud of millions, united in one purpose.
Couzin would put groups of up to 120 juveniles into a sombrero-shaped arena he called the locust accelerator, letting them walk in circles around the rim for eight hours a day while an overhead camera filmed their movements and software mapped their positions and orientations. He eventually saw what he was looking for: At a certain density, the bugs would shift to cohesive, aligned clusters. And at a second critical point, the clusters would become a single marching army. Haphazard milling became rank-and-file—a prelude to their transformation into black-and-yellow adults.
That’s what happens in nature, but no one had ever induced these shifts in the lab—at least not in animals. In 1995 a Hungarian physicist named Tamás Vicsek and his colleagues devised a model to explain group behavior with a simple—almost rudimentary—condition: Every individual moving at a constant velocity matches its direction to that of its neighbors within a certain radius. As this hypothetical collective becomes bigger, it flips from a disordered throng to an organized swarm, just like Couzin’s locusts. It’s a phase transition, like water turning to ice. The individuals have no plan. They obey no instructions. But with the right if-then rules, order emerges.
Couzin wanted to know what if-then rules produced similar behaviors in living things. “We thought that maybe by being close to each other, they could transfer information,” Couzin says. But they weren’t communicating in a recognizable way. Some other dynamic had to be at work.
Rules that produce majestic cohesion out of local jostling turn up everywhere.
The answer turned out to be quite grisly. Every morning, Couzin would count the number of locusts he placed in the accelerator. In the evening, his colleague Jerome Buhl would count them as he took them out. But Buhl was finding fewer individuals than Couzin said he had started with. “I thought I was going mad,” Couzin says. “My credibility was at stake if I couldn’t even count the right number of locusts.”
When he replayed the video footage and zoomed in, he saw that the locusts were biting each other if they got too close. Some unlucky individuals were completely devoured. That was the key. Cannibalism, not cooperation, was aligning the swarm. Couzin figured out an elegant proof for the theory: “You can cut the nerve in their abdomen that lets them feel bites from behind, and you completely remove their capacity to swarm,” he says.
Couzin’s findings are an example of a phenomenon that has captured the imagination of researchers around the world. For more than a century people have tried to understand how individuals become unified groups. The hints were tantalizing—animals spontaneously generate the same formations that physicists observe in statistical models. There had to be underlying commonalities. The secrets of the swarm hinted at a whole new way of looking at the world.
But those secrets were hidden for decades. Science, in general, is a lot better at breaking complex things into tiny parts than it is at figuring out how tiny parts turn into complex things. When it came to figuring out collectives, nobody had the methods or the math.



A flock of red-winged blackbirds forms and re-forms over California’s Sacramento Valley.
Photo: Lukas Felzmann
The first thing to hit Iain Couzin when he walked into the Oxford lab where he kept his locusts was the smell, like a stale barn full of old hay. The second, third, and fourth things to hit him were locusts. The insects frequently escaped their cages and careened into the faces of scientists and lab techs. The room was hot and humid, and the constant commotion of 20,000 bugs produced a miasma of aerosolized insect exoskeleton. Many of the staff had to wear respirators to avoid developing severe allergies. “It wasn’t the easiest place to do science,” Couzin says.

Now, thanks to new observation technologies, powerful software, and statistical methods, the mechanics of collectives are being revealed. Indeed, enough physicists, biologists, and engineers have gotten involved that the science itself seems to be hitting a density-dependent shift. Without obvious leaders or an overarching plan, this collective of the collective-obsessed is finding that the rules that produce majestic cohesion out of local jostling turn up in everything from neurons to human beings. Behavior that seems impossibly complex can have disarmingly simple foundations. And the rules may explain everything from how cancer spreads to how the brain works and how armadas of robot-driven cars might someday navigate highways. The way individuals work together may actually be more important than the way they work alone.



Blue jack mackerel merge into a bait ball, a torus that confuses predators.
Photo: Christopher Swann/Science Photo Library
Aristotle first posited that the whole could be more than the sum of its parts. Ever since, philosophers, physicists, chemists, and biologists have periodically rediscovered the idea. But it was only in the computer age—with the ability to iterate simple rule sets millions of times over—that this hazy concept came into sharp focus.

HOW SWARMS EMERGE

Individuals in groups from neurons and cancer cells to birds and fish organize themselves into collectives, and those collectives move in predictable ways. But the ways those swarms, schools, flocks, and herds flip from chaos to order differ. Here’s a look at some of the behaviorial triggers. —Katie M. Palmer
  • swarm

    GOLDEN SHINERS

    Behavior: Seek darkness
    Presumably for protection, shiners search out dark waters. But they can’t actually perceive changes in light levels that might guide their way. Instead, they follow one simple directive: When light disappears, slow down. As a result, the fish in a school pile up in dark pools and stay put.
  • swarm

    ANTS

    Behavior: Work in rhythm
    When ants of a certain species get crowded enough to bump into each other, coordinated waves of activity pulse through every 20 minutes.
  • swarm

    HUMANS

    Behavior: Be a follower
    Absent normal communication, humans can be as impressionable as a flock of sheep. If one member of a walking group is instructed to move toward a target, though other members may not know the target—or even that there is a target—the whole group will eventually be shepherded in its direction.
  • swarm

    LOCUSTS

    Behavior: Cannibalism
    When enough locusts squeeze together, bites from behind send individuals fleeing to safety. Eventually they organize into conga-line-like clusters to avoid being eaten. They also emit pheromones to attract even more locusts, resulting in a swarm.
  • swarm

    STARLINGS

    Behavior: Do what the neighbors do
    These birds coordinate their speed and direction with just a half dozen of their closest murmuration-mates, regardless of how packed the flock gets. Those interactions are enough to steer the entire group in the same direction.
  • swarm

    HONEYBEES

    Behavior: Head-butting
    When honeybees return from searching for a new nest, they waggle in a dance that identifies the location. But if multiple sites exist, a bee can advocate for its choice by ramming its head into other waggling bees. A bee that gets butted enough times stops dancing, ultimately leaving the hive with one option.
For most of the 20th century, biologists and physicists pursued the concept along parallel but separate tracks. Biologists knew that living things exhibited collective behavior—it was hard to miss—but how they pulled it off was an open question. The problem was, before anyone could figure out how swarms formed, someone had to figure out how to do the observations. In a herd, all the wildebeests/bacteria/starlings/whatevers look pretty much alike. Plus, they’re moving fast through three-dimensional spaces. “It was just incredibly difficult to get the right data,” says Nigel Franks, a University of Bristol biologist and Couzin’s thesis adviser. “You were trying to look at all the parts and the complete parcel at the same time.”
Physicists, on the other hand, had a different problem. Typically biologists were working with collectives ranging in number from a few to a few thousand; physicists count groups of a few gazillion. The kinds of collectives that undergo phase transitions, like liquids, contain individual units counted in double-digit powers of 10. From a statistical perspective, physics and math basically pretend those collectives are infinitely large. So again, you can’t observe the individuals directly in any meaningful way. But you can model them.
A great leap forward came in 1970, when a mathematician named John Conway invented what he called the Game of Life. Conway imagined an Othello board, with game pieces flipping between black and white. The state of the markers—called cells—changed depending on the status of neighboring cells. A black cell with one or no black neighbors “died” of loneliness, turning white. Two black neighbors: no change. Three, and the cell “resurrected,” flipping from white to black. Four, and it died of overcrowding—back to white. The board turned into a constantly shifting mosaic.
Conway could play out these rules with an actual board, but when he and other programmers simulated the game digitally, Life got very complicated. At high speed, with larger game boards, they were able to coax an astonishing array of patterns to evolve across their screens. Depending on the starting conditions, they got trains of cells that trailed puffs of smoke, or guns that shot out small gliders. At a time when most software needed complex rules to produce even simple behaviors, the Game of Life did the opposite. Conway had built a model of emergence—the ability of his little black and white critters to self-organize into something new.
Sixteen years later, a computer animator named Craig Reynolds set out to find a way to automate the animated movements of large groups—a more efficient algorithm would save processing time and money. Reynolds’ software, Boids, created virtual agents that mimicked a flock of birds. It included behaviors like obstacle avoidance and the physics of flight, but at the heart of Boids were three simple rules: Move toward the average position of your neighbors, keep some distance from them, and align with their average heading (alignment is a measure of how close an individual’s direction of movement is to that of other individuals). That’s it.
Boids and its ilk revolutionized Hollywood in the early ’90s. It animated the penguins and bats of Batman Returns. Its descendants include software like Massive, the program that choreographed the titanic battles in the Lord of the Rings trilogy. That would all be miraculous enough, but the flocks created by Boids also suggested that real-world animal swarms might arise the same way—not from top-down orders, mental templates of orderly flocks, or telepathic communication (as some biologists had seriously proposed). Complexity, as Aristotle suggested, could come from the bottom up.
The field was starting to take off. Vicsek, the Hungarian physicist, simulated his flock in 1995, and in the late 1990s a German physicist named Dirk Helbing programmed sims in which digital people spontaneously formed lanes on a crowded street and crushed themselves into fatal jams when fleeing from a threat like a fire—just as real humans do. Helbing did it with simple “social forces.” All he had to do was tell his virtual humans to walk at a preferred speed toward a destination, keep their distance from walls and one another, and align with the direction of their neighbors. Presto: instant mob.
By the early 2000s, the research in biology and physics was starting to intersect. Cameras and computer-vision technologies could show the action of individuals in animal swarms, and simulations were producing more and more lifelike results. Researchers were starting to be able to ask the key questions: Were living collectives following rules as simple as those in the Game of Life or Vicsek’s models? And if they were … how?

TAKING SHAPE

Changing simple parameters has profound effects on a swarm. By controlling only attraction, repulsion, and alignment (how similar a critter’s direction is to that of its neighbors), researcher Iain Couzin induced three different behaviors in a virtual collective, all akin to ones in nature.—Katie M. Palmer
DISORDER Alignment with only the closest neighbors produces … nothing but a disordered swarm.
TORUS Raise the alignment and the chaotic swarm swirls into a doughnut shape called a torus.
FLOCK Maximize alignment across the flock and the torus shifts; everyone travels in the same direction.
swarm2
swarm2
swarm2
Before studying collectives, Couzin collected them. Growing up in Scotland, he wanted pets, but his brothers’ various allergies allowed only the most unorthodox ones. “I had snails at the back of my bed, aphids in my cupboard, and stick insects in my school locker,” he says. And anything that formed swarms fascinated him. “I remember seeing these fluidlike fish schools on TV, watching them again and again, and being mesmerized. I thought fish were boring, but these patterns—” Couzin pauses, and you can almost see the whorls of schooling fish looping behind his eyes; then he’s back. “I’ve always been interested in patterns,” he says simply.
When Couzin became a graduate student in Franks’ lab in 1996, he finally got his chance to work on them. Franks was trying to figure out how ant colonies organize themselves, and Couzin joined in. He would dab each bug with paint and watch them on video, replaying the recording over and over to follow different individuals. “It was very laborious,” he says. Worse, Couzin doubted it worked. He didn’t believe the naked eye could follow the multitude of parallel interactions in a colony. So he turned to artificial ones. He learned to program a computer to track the ants—and eventually to simulate entire animal groups. He was learning to study not the ants but the swarm.
For a biologist, the field was a lonely one. “I thought there must be whole labs focused on this,” Couzin says. “I was astonished to find that there weren’t.” What he found instead was Boids. In 2002 Couzin cracked open the software and focused on its essential trinity of attraction, repulsion, and alignment. Then he messed with it. With attraction and repulsion turned up and alignment turned off, his virtual swarm stayed loose and disordered. When Couzin upped the alignment, the swarm coalesced into a whirling doughnut, like a school of mackerel. When he increased the range over which alignment occurred even more, the doughnut disintegrated and all the elements pointed themselves in one direction and started moving together, like a flock of migrating birds. In other words, all these different shapes come from the same algorithms. “I began to view the simulations as an extension of my brain,” Couzin says. “By allowing the computer to help me think, I could develop my intuition of how these systems worked.”
By 2003, Couzin had a grant to work with locusts at Oxford. Labs around the world were quietly putting other swarms through their paces. Bacterial colonies, slime molds, fish, birds … a broader literature was starting to emerge. Work from Couzin’s group, though, was among the first to show physicists and biologists how their disciplines could fuse together. Studying animal behavior “used to involve taking a notepad and writing, ‘The big gorilla hit the little gorilla,’ ”  Vicsek says. “Now there’s a new era where you can collect data at millions of bits per second and then go to your computer and analyze it.”

A swarm of locusts.
Photo: Mitsuhiko Imamori/Minden
Today Couzin, 39, heads a lab at Princeton University. He has a broad face and cropped hair, and the gaze coming from behind his black-rimmed glasses is intense. The 19-person team he leads is ostensibly part of the Department of Ecology and Evolutionary Biology but includes physicists and mathematicians. They share an office with eight high-end workstations—all named Hyron, the Cretan word for beehive, and powered by videogame graphics cards.
Locusts are verboten in US research because of fears they’ll escape and destroy crops. So when Couzin came to Princeton in 2007, he knew he needed a new animal. He had done some work with fish, so he headed to a nearby lake with nets, waders, and a willing team. After hours of slapstick failure, and very few fish, he approached some fishermen on a nearby bridge. “I thought they’d know where the shoals would be, but then I went over and saw tiny minnow-sized fish in their buckets, schooling like crazy.” They were golden shiners—unremarkable 2- to 3-inch-long creatures that are “dumber than I could possibly have imagined,” Couzin says. They are also extremely cheap. To get started he bought 1,000 of them for 70 bucks.
When Couzin enters the room where the shiners are kept, they press up against the front of their tanks in their expectation of food, losing any semblance of a collective. But as soon as he nets them out and drops them into a wide nearby pool, they school together, racing around like cars on a track. His team has injected colored liquid and a jelling agent into their tiny backs; the two materials congeal into a piece of gaudy plastic, making them highly visible from above. As they navigate courses in the pool, lights illuminate the plastic and cameras film their movements. Couzin is using these stupid fish to move beyond just looking at how collectives form and begin to study what they can accomplish. What abilities do they gain?
For example, when Couzin flashes light over the shiners, they move, as one, to shadier patches, presumably because darkness equals relative safety for a fish whose main defensive weapon is “run away.” Behavior like this is typically explained with the “many wrongs principle,” first proposed in 1964. Each shiner, the theory goes, makes an imperfect estimate about where to go, and the school, by interacting and staying together, averages these many slightly wrong estimations to get the best direction. You might recognize this concept by the term journalist James Surowiecki popularized: “the wisdom of crowds.”
But in the case of shiners, Couzin’s observations in the lab have shown that the theory is wrong. The school could not be pooling imperfect estimates, because the individuals don’t make estimates of where things are darker at all. Instead they obey a simple rule: Swim slower in shade. When a disorganized group of shiners hits a dark patch, fish on the edge decelerate and the entire group swivels into darkness. Once out of the light, all of them slow down and cluster together, like cars jamming on a highway. “That’s purely an emergent property,” Couzin says. “The sensing ability really happens only at the level of the collective.” In other words, none of the shiners are purposefully swimming toward anything. The crowd has no wisdom to cobble together.
Other students of collectives have found similar feats of swarm intelligence, including some that happen in actual swarms. Every spring, honeybees leave their old colonies to build new nests. Scouts return to the hive to convey the locations of prime real estate by waggling their bottoms and dancing in figure eights. The intricate steps of the dances encode distance and direction, but more important, these dances excite other scouts.
Thomas Seeley, a behavioral biologist at Cornell, used colored paint to mark bees that visited different sites and found that those advocating one location ram their heads against colony-mates that waggle for another. If a dancer gets rammed often enough, it stops dancing. The head-butt is the bee version of a downvote. Once one party builds past a certain threshold of support, the entire colony flies off as one.
House-hunting bees turn out to be a literal hive mind, composed of bodies. This is no cheap metaphor. In the 1980s cognitive scientists began to posit that human cognition itself is an emergent process. In your brain, this thinking goes, different sets of neurons fire in favor of different options, exciting some neighbors into firing like the waggling bees, and inhibiting others into silence, like the head-butting ones. The competition builds until a decision emerges. The brain as a whole says, “Go right” or “Eat that cookie.”
If a falcon attacks, all the starlings dodge almost instantly—even those on the far side of the flock that haven’t seen the threat.
The same dynamics can be seen in starlings: On clear winter evenings, murmurations of the tiny blackish birds gather in Rome’s sunset skies, wheeling about like rustling cloth. If a falcon attacks, all the starlings dodge almost instantaneously, even those on the far side of the flock that haven’t seen the threat. How can this be? Italian physicist Andrea Cavagna discovered their secret by filming thousands of starlings from a chilly museum rooftop with three cameras and using a computer to reconstruct the birds’ movements in three dimensions. In most systems where information gets transferred from individual to individual, the quality of that information degrades, gets corrupted—like in a game of telephone. But Cavagna found that the starlings’ movements are united in a “scale-free” way. If one turns, they all turn. If one speeds up, they all speed up. The rules are simple—do what your half-dozen closest neighbors do without hitting them, essentially. But because the quality of the information the birds perceive about one another decays far more slowly than expected, the perceptions of any individual starling extend to the edges of the murmuration and the entire flock moves.
All these similarities seem to point to a grand unified theory of the swarm—a fundamental ultra-calculus that unites the various strands of group behavior. In one paper, Vicsek and a colleague wondered whether there might be “some simple underlying laws of nature (such as, e.g., the principles of thermodynamics) that produce the whole variety of the observed phenomena.”
Couzin has considered the same thing. “Why are we seeing this again and again?” he says. “There’s got to be something deeper and more fundamental.” Biologists are used to convergent evolution, like the streamlining of dolphins and sharks or echolocation in bats and whales—animals from separate lineages have similar adaptations. But convergent evolution of algorithms? Either all these collectives came up with different behaviors that produce the same outcomes—head-butting bees, neighbor-watching starlings, light-dodging golden shiners—or some basic rules underlie everything and the behaviors are the bridge from the rules to the collective.
Stephen Wolfram would probably say it’s the underlying rules. The British mathematician and inventor of the indispensable software Mathematica published a backbreaking 1,200-page book in 2002, A New Kind of Science, positing that emergent properties embodied by collectives came from simple programs that drove the complexity of snowflakes, shells, the brain, even the universe itself. Wolfram promised that his book would lead the way to uncovering those algorithms, but he never quite got there.
Couzin, on the other hand, is wary of claims that his field has hit upon the secret to life, the universe, and everything. “I’m very cautious about suggesting that there’ll be an underlying theory that’ll explain the stock market and neural systems and fish schools,” he says. “That’s relatively naive. There’s a danger in thinking that one equation fits all.” Physics predicts the interactions of his locusts, but the mechanism manifests through cannibalism. Math didn’t produce the biology; biology generated the math.
Still, just about any system of individual units pumped with energy—kinetic, thermal, whatever—produces patterns. Metal rods organize into vortices when bounced around on a vibrating platform. In a petri dish, muscle proteins migrate unidirectionally when pushed by molecular motors. Tumors spawn populations of rogue, mobile cells that align with and migrate into surrounding tissues, following a subset of trailblazing leader cells. That looks like a migrating swarm; figure out its algorithms and maybe you could divert it from vital organs or stop its progress.
The same kind of rules apply when you step up the complexity. The retina, that sheet of light-sensing tissue at the back of the eye, connects to the optic nerve and brain. Michael Berry, a Princeton neuroscientist, mounts patches of retinas on electrodes and shows them videos, watching their electrophysiological responses. In this context, the videos are like the moving spotlights Couzin uses with his shiners—and just as with the fish, Berry finds emergent behaviors with the addition of more neurons. “Whether the variable is direction, heading, or how you vote, you can map the mathematics from system to system,” Couzin says.


A crowd of humans.
Photo: Amanda Mustard/Corbis
In a lab that looks like an aircraft hangar, several miles from Princeton’s main campus, an assortment of submersibles are suspended from the ceiling. The cool air has a tang of chlorine, thanks to a 20,000-gallon water tank, 20 feet across and 8 feet deep, home to four sleek, cat-sized robots with dorsal and rear propellers that let them swim in three dimensions.
The robots are called Belugas, and they’re designed to test models of collective behavior. “We’re learning about mechanisms in nature that I wouldn’t have dreamed of designing,” says engineer Naomi Leonard. She plans to release pods of underwater robots to collect data on temperature, currents, pollution, and more. Her robots can also track moving gradients, avoid each other, and keep far enough apart to avoid collecting redundant data—just enough programming to unlock more complex abilities. Theoretically.
Today it’s not working. Three Belugas are out of the tank so Leonard’s team can tinker. The one in the water is on manual, driven by a thick gaming joystick. The controls are responsive, if leisurely, and daredevil maneuvers are out of the question.
Leonard has a video of the robots working together, though, and it’s much more convincing. The bots carry out missions with a feedback-controlled algorithm programmed into them, like finding the highest concentrations of oil in a simulated spill or collecting “targets” separately and then reuniting.
Building a successful robot swarm would show that the researchers have figured out something basic. Robot groups already exist, but most have sophisticated artificial intelligence or rely on orders from human operators or central computers. To Tamás Vicsek—the physicist who created those early flock simulations—that’s cheating. He’s trying to build quadcopters that flock like real birds, relying only on knowledge of their neighbors’ position, direction, and speed. Vicsek wants his quadcopters to chase down another drone, but so far he’s had little success. “If we just apply the simple rules developed by us and Iain, it doesn’t work,” Vicsek says. “They tend to overshoot their mark, because they do not slow down enough.”
Another group of researchers is trying to pilot a flock of unmanned aerial vehicles using fancy network theories—the same kind of rules that govern relationships on Facebook—to communicate, while governing the flocking behavior of the drones with a modified version of Boids, the computer animation software that helped spark the field in the first place. Yet another team is working on applying flocking behaviors to autonomous cars—one of the fundamental emergent properties of a flock is collision avoidance, and one of the most important things self-driving cars will have to be able to do is not run into people or one another.
So far, the Belugas’ biggest obstacle has been engineering. The robots’ responses to commands are delayed. Small asymmetries in their hulls change the way each one moves. Ultimately, dealing with that messiness might be the key to taking the study of collectives to the next level. Ever since the days of Boids, scientists have made big assumptions about how animals interact. But animals are more than models. They sense the world. They communicate. They make decisions. These are the abilities that Couzin wants to channel. “I started off with these simple units interacting to form complex patterns, and that’s fine, but real animals aren’t that simple,” Couzin says. He picks up a plastic model of a crow from his bookshelf. “Here we have a pretty complex creature. It’s getting to the point where we’ll be able to analyze the behavior of these animals in natural, three-dimensional environments.” Step one might be to put a cheap Microsoft Kinect game system into an aviary, bathing the room in infrared and mapping the space.
Step two would be to take the same measurements in the real world. Every crow in a murder would carry miniature sensors that record its movements, along with the chemicals in its body, the activity in its brain, and the images on its retina. Couzin could marry the behavior of the cells and neurons inside each bird with the movements of the flock. It’s a souped-up version of the locust accelerator—combine real-world models with tech to get an unprecedented look at creatures that have been studied intensively as individuals but ignored as groups. “We could then really understand how these animals gain information from each other, communicate, and make decisions,” Couzin says. He doesn’t know what he’ll find, but that’s the beauty of being part of the swarm: Even if you don’t know where you’re going, you still get there.
Ed Yong (edyong209@gmail.comwrites the blog Not Exactly Rocket Science for National Geographic.