![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiSzbOBiW9de1dZ-b8OXyZNRB2iAH1NXjG2NT3PQSXFJHlWeQWQLe4MC0Q7aaB6mDsjhTLnLGqx_KvAiHjIDpk8GLE2VwLi0AUOO_wyEORScjivOd1wZgSMvMMrJTwBTxGjZGog5SDs7xn0/s1600/CSAp-IOVAAE-6x_.jpg)
Contagio explosivo en redes
J. Gómez-Gardenes, L. Lotero, S. N. Taraskin y F. J. Pérez-Reche
Scientific Report 6, Número del artículo: 19767 (2016)
doi: 10.1038 / srep19767
Nature
Resumen
La difusión de los fenómenos sociales tales como comportamientos, ideas o productos es un fenómeno omnipresente pero extraordinariamente compleja. Una avenida con éxito para estudiar la propagación de los fenómenos sociales se basa en modelos epidémicos estableciendo analogías entre la transmisión de los fenómenos sociales y las enfermedades infecciosas. Estos modelos suelen asumir las interacciones sociales simples restringido a los pares de individuos; efectos del contexto a menudo se descuidan. Aquí nos muestran que los efectos sinérgicos locales asociados con los conocidos de pares de individuos pueden tener notables consecuencias en la propagación de los fenómenos sociales a grandes escalas. Las predicciones más interesantes se encuentran para un escenario en el que la capacidad de contagio de una barra de separación disminuye con el número de individuos ignorantes que rodean el objetivo ignorante. Este mecanismo imita situaciones ubicuos en el que la disposición de los individuos a adoptar un nuevo producto depende no sólo del valor intrínseco del producto, sino también de si sus conocidos adopten este producto o no. En estas situaciones, se muestra que la normalmente suave (de segundo orden) las transiciones hacia la gran contagio social volverse explosivo (primer orden). Por lo tanto, los mecanismos sinérgicos propuestos explican por qué las ideas, los rumores o productos pueden de repente y de forma inesperada a veces pongan al día.Introducción
La comunicación entre pares de individuos constituye el componente básico de contagio y difusión de los fenómenos sociales tales como comportamientos, ideas o productos macroscópica. La formulación matemática para la difusión social es una reminiscencia de la propagación de enfermedades infecciosas y de hecho es común utilizar el término viral para referirse a la rápida aparición de un producto o una idea. Siguiendo esta analogía, los modelos compartimentales epidémicas como el Suceptible-Infected-Susceptible (SIS) o el Susceptible-Infectados-Recovered (SIR) a menudo se utilizan para describir la dinámica de la transmisión de fenómenos sociales [1,2,3].modelos epidémicos asumen que la transición a las invasiones epidémicas macroscópicas en una población puede explicarse totalmente en términos de contagios microscópicas entre pares de individuos. Sin embargo, la dinámica de la transmisión social no sólo dependen de las características de la transmisión y recepción de los individuos (por ejemplo, en la actitud o capacidad de persuasión), pero también dependen del contexto del evento de transmisión. En particular, los individuos conectados de alguna manera al transmisor-receptor pares de individuos podrían tener efectos importantes e inesperados sobre la propagación de los fenómenos sociales en el nivel [4,5] de la población mundial.
El primer intento de incluir la influencia del contexto dentro de un marco de modelización epidemiológica fue hecha por Daley y Kendal (DK) [6]. En el modelo DK, un individuo difusión de un rumor o idea puede dejar de difundir y convertirse en un Stifler después de darse cuenta de que el rumor ya es conocido por algunos de sus contactos. La importancia de la contabilidad de este efecto se puso de relieve en su trabajo al mostrar que un rumor puede llegar a una gran fracción de la población, incluso si se transmite a una velocidad infinitamente pequeño α. Este hallazgo estaba en marcado contraste con las epidemias prototipo SIR que ignoran los efectos de las personas que rodean pares infectados susceptibles y sólo predicen grandes invasiones si la tasa de transmisión de la infección es mayor que un cierto valor crítico, es decir, si
Una transición continua entre los regímenes no invasivas e invasivas no es capaz de explicar el hecho de que los fenómenos sociales a menudo se convierten aceptada por muchas personas durante la noche. Los ejemplos incluyen el desarrollo repentino de los movimientos sociales o el rápido aumento de la popularidad de la nueva herramientas [11] de comunicación. Tales contagios explosivos corresponderían a una transición de fase de primer orden de no invasiva a los regímenes invasivos en los que el número de personas afectadas por el fenómeno de difusión presenta un aumento discontinuo. transiciones explosivos a gran contagio han sido predicho por algunos modelos que incorporan mecanismos sinérgicos complejas. Estos incluyen la dinámica de transmisión en el que ignorantes sólo puede convertirse en esparcidores de si están rodeados por un número de esparcidores de más de un cierto umbral [12,13,14] y modelos en los que la transmisión se ve reforzada por la memoria constructiva de ignorantes a exposiciones previas a la difusión del fenómeno [15,16 , 17,18,19] o por una cooperación no lineal de los difusores [20,21] de transmisión. Tenga en cuenta que los mecanismos de transmisión débilmente no lineal y sin memoria sinérgicos estudiados en las referencias 9,10 no dan lugar a transiciones explosivos. Esto sugiere que una fuerte no linealidad y la memoria a intentos de transmisión anteriores son factores importantes que conducen a las transiciones de explosivos. transiciones explosivas también se han observado en los modelos que asumen configuración adaptable de contactos de huéspedes susceptibles para evitar la infección de individuos [22] infectados. En este caso, el recableado juega un papel crucial para la transición desde la eliminación de explosivos contactos sin volver a cablear además conduce a transiciones [23] continuas.
Modelos que predicen el contagio explosiva suelen asumir fuertes efectos sinérgicos que implican receptores (individuos ignorantes) y transmisores (de esparcidora); los efectos de los conocidos ignorantes de receptores normalmente se descuidan. En este artículo, se muestra que las transiciones de explosivos también puede ocurrir cuando los individuos conocidos de receptores ignorantes son muy reacios a aceptar nuevos fenómenos sociales. Este resultado aparentemente paradójico es especialmente relevante para los contextos sociales en los que los individuos dude unirse a un movimiento colectivo, por ejemplo, una huelga, temiendo el riesgo de convertirse en parte de una minoría que con el tiempo puede ser castigado. Este escenario también corresponde a los ajustes sociales típicos. Por ejemplo, los medios sociales como YouTube, Facebook o Whatsapp tienen típicamente una aceptación [11] muy rápida, que depende tanto de su valor intrínseco y el valor percibido dada por nuestros conocidos.
Velocidad de transmisión sinérgica
El modelo presentado aquí se extiende los propuestos en las referencias 9,10 para incorporar los efectos de los individuos ignorantes conectados a receptores (ver Fig. 1). Tenga en cuenta que esto contrasta con los mecanismos utilizados en las referencias 9,10 que se centraron en los efectos sinérgicos de los esparcidores unidos a los receptores. En particular, se modela la velocidad de transmisión, desde un transmisor a un receptor j ignorante / i saludable como:Figura 1: Diagrama esquemático de la transmisión desde un transmisor j a un receptor i con tasa sinérgica dada por la ecuación. (1) cuando hay 2 individuos ignorantes / sanos (círculos verdes) que rodean i.
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiSzbOBiW9de1dZ-b8OXyZNRB2iAH1NXjG2NT3PQSXFJHlWeQWQLe4MC0Q7aaB6mDsjhTLnLGqx_KvAiHjIDpk8GLE2VwLi0AUOO_wyEORScjivOd1wZgSMvMMrJTwBTxGjZGog5SDs7xn0/s1600/CSAp-IOVAAE-6x_.jpg)
donde α aporte el valor intrínseco del fenómeno en expansión en ausencia del contexto. El número,
y (ii) en dependencia lineal
dónde
Contagio explosivo en epidemias SIS
La evolución del proceso de difusión depende tanto de las tasas de transmisión y reglas dinámicas impuestas. Para ser concretos, comenzamos el análisis mediante el empleo de las tasas de transmisión sinérgicos exponenciales (2) para la dinámica de contagio dadas por las reglas del modelo epidemia SIS aplicado a una población de N individuos. Los individuos forman una red de contactos a través del cual se propaga la información. Para empezar, ilustramos nuestros resultados mediante el uso de un Erdös-Rényi (ER) grafo de tamañoEn la dinámica del SIS, cada individuo puede ser susceptible (ignorantes) o infectados (spreader). Dentro de tiempo discreto dinámica de transmisión emplean en la mayoría de nuestras simulaciones, un esparcidor, j, en un intervalo de tiempo
La Figura 2 muestra la concentración de los esparcidores en el estado estacionario,
Figura 2: Concentración de difusores, <y>, en el estado estacionario de las epidemias SIS en redes Erdös-Rényi con <k> = 4 como una función de la velocidad de transmisión inherente, α.
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgsH0ZMkKGAqroVoo8wtenf-hGaq5-l3N3ys19wQ3TWS9glRRsqhoXd42y-u3KebIkONsxY6LoW9v8P9go7GyXf5LM94c0zjiU0x535B-xqv8m7mPde7fDQWnJP7BHHitPETKwSfTV7YUyK/s1600/krieg3.jpg)
El resultado sorprendente es que, para valores negativos de suficientes β, el modelo SIS sinérgico muestra una transición de fase abrupto de la fase libre de spreader (sana) a la endémica. Esta aparición explosiva del régimen endémica es nuestro principal hallazgo y se encuentra en marcado contraste con los resultados obtenidos con los modelos tradicionales de epidemia no sinérgicos.
Evolución microscópica de Markov
Pruebas adicionales para el fenómeno se puede obtener por resolución numérica de las ecuaciones de evolución microscópicas de Markov que se extienden en el método introducido [24,25] mediante la incorporación de los efectos de sinergia. Las cantidades clave en este enfoque son las probabilidadesdonde
Aquí,
usando de la expresión
En la Fig. 3, se muestran los resultados de la solución numérica de las ecuaciones. (4) en una red de ER de grado medio. Ecs. (4) para
Figura 3: Concentración de crucetas, <y>, como una función de α para el proceso de SIS en una red de Erdös-Rényi de <k> = 6 cuando β = -0,5.
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEi5aUyv3ZeUKJdoYkZpC52JSzUzeLfTzmyQNXJ-TmHTtYNTgak-PPPAQJ_WbkX9i_0teMZTFFuzN-Ti6oM_PGIDZ03vvFZNIyofTipKCez4XQFrIksqPb46cRe6ZdaM82aPUkWFjGOFWVVw/s1600/south+vietnam+soldier+french+outpost+laos+vietnam.jpg)
Las curvas de trazos indican la solución obtenida mediante la resolución de las ecuaciones de evolución Markovianos mientras que los círculos de color ámbar sólidos corresponden a los resultados obtenidos mediante el uso de simulaciones MC (103 Realizaciones para cada valor de α). El efecto de histéresis señala la existencia de una región de bi-estabilidad. La curva continua muestra la fracción
Los resultados anteriores se corroboraron mediante simulaciones MC van desde diferentes configuraciones iniciales con las fracciones de esparcidores dibujadas uniformemente al azar entre 0 y 1 (en contraste con los datos presentados en la Fig. 2, donde, debido a la especial elección de las condiciones iniciales, solamente la rama superior del se muestra la histéresis en la región de bi-estabilidad). La comparación entre los dos enfoques se muestra también en la Fig. 3 en términos de la fracción
Modelo de campo medio
Para obtener una mayor comprensión de cómo aparecen las transiciones explosivo en el modelo SIS sinérgico, consideramos un modelo de campo medio heterogéneo. Dentro de este formalismo, la concentracióndonde
El estado estacionario del proceso de SIS en la aproximación de campo medio se corresponde con la condición
Esta igualdad es trivialmente satisfecha por
La solución de la ecuación. (9) para la velocidad de transmisión sinérgico exponencial,
La función de Lambert sólo se define por
Aquí,
Transiciones explosivas se observan para
donde la transición invasión que ocurre con el aumento de α y β fijos en cambios de segunda a primera orden con la disminución de β.
En la Fig. 4, se muestra el diagrama de contagio en el avión. Las curvas continuas muestran las predicciones de análisis
Figura 4: Diagrama de contagio en el plano (α, β).
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhjpgiKr9JjXEdT-KqZCtKML0ZSthFidJVKR00Pz2Akqhuj8NDasN7nnJ0QvVcxKrPxFmsi0r866V3lrz39SHEnjXwyjOa1ODys9ZmbMmoAcr_1YqGC-vv5RTX3awAeTzfEppWYaLO8CBtr/s1600/hires_110712-N-TT977-077c.jpg)
Las curvas continuas muestran la predicción de campo medio teórico para los límites de la región de bi-estabilidad,
Contagio explosivo con la eliminación de los esparcidores
El modelo asume que el SIS esparcidores se detenga temporalmente la difusión del fenómeno social, pero con el tiempo puede reanudar extendiéndola después de conocer a un esparcidor. En algunos casos, sin embargo, puede ser más apropiado asumir que esparcidores dejan difundir de forma permanente, es decir, se convierten en stiflers o eliminadas por pasar del estado de separación a un nuevo compartimento para los individuos eliminados, como en el modelo epidemia SIR. Dentro de un marco de campo medio, es posible formular un modelo con mecanismos de eliminación más bien generales que abarcan tanto el modelo SIR y una variante del modelo DK introducido por Maki y Thompson (MT)[29]. La dinámica de las concentraciones de ignorantes (x), esparcidores (y) y removidos (r) en los gráficos z-regular de azar están dadas por las siguientes ecuaciones:Estas ecuaciones se supone que la población se mantiene constante, es decir, las concentraciones satisfacen la condición de cierre
La velocidad de transmisión se define como
Tabla 1: Resumen de las funciones que describen los modelos con la eliminación de difusores.
Modelo | γ(x) | σz(x) | F2(x) |
---|---|---|---|
SIR, no synergy | 1 | 1 | ln(x) |
SIR, linear synergy | 1 | ||
SIR, exponential synergy | 1 | ||
MT, no synergy | 1 | ||
MT, linear synergy | |||
MT, exponential synergy |
- Las expresiones están dadas para grafos aleatorios z-regulares. La función
aparece en
para modelos con sinergia exponenciales la integral exponencial definida como
.
Por último, la transición desde el estado de separación a la que se retira es mediada en las Ecs. (13) y (14) por el parámetro μ (la tasa de eliminación espontánea de un esparcidor) y la función que captura varios mecanismos posibles para la eliminación de crucetas. En particular, el modelo supone que SIR esparcidores dejar de difundir los fenómenos sociales de forma espontánea (es decir, la eliminación no se ve afectado por los encuentros con otros individuos). En contraste, el modelo MT asume que la recuperación sólo puede ocurrir cuando un esparcidor se encuentra con otro esparcidor o un individuo eliminados (por ejemplo, un Stifler). Estos dos comportamientos pueden ser modelados mediante el establecimiento (véase la tabla 1),
de modo que el análisis de los modelos de SIR y MT se puede hacer de una manera unificada mediante la resolución de las ecuaciones. (12) - (14),,.
En general, no es posible obtener una solución exacta para el sistema definido por las ecuaciones. (12) - (14),,. Sin embargo, es posible obtener la concentración final de los individuos retirados,
Aquí,
incorpora mecanismos sinérgicos
donde el primer denota la derivada con respecto a x. A partir de las ecuaciones. (18) y (16), la velocidad de transmisión inherente en el punto triple puede ser expresado como:
En general, cualquier difusión fenómeno con la eliminación de los esparcidores para los que Ecs. (18) - (19), tienen una solución con
En la Fig. 5 se muestran las soluciones de la ecuación. (16) (curvas de trazos) para el modelo SIR con tasa exponencial sinérgico junto con los resultados (puntos) obtenidos por simulaciones MC. La evolución de las curvas discontinuas revela una transición sin problemas a los regímenes de explosivos durante la disminución β. Estos resultados corresponden a una concentración relativamente grande inicial de ignorantes. Sin embargo, es posible demostrar que las transiciones de explosivos pueden ser observados para cualquier concentración inicial positiva de ignorantes previsto
Figura 5: Concentración de removeds al final de epidemias SIR como una función de la velocidad de transmisión inherente, α.
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgQPjMG15hkGdeu7QSYbYTLfF3pNmuMut2oNkxqeUyb3X7OTbjume6CAMort4zj0jZHbj2yA33u5L4GF62RdrGL0BZoQ_9sU2ACmva5QdPzbG3f-EqyVSkMXAkK5hTIjoq9_cQ-2q1ZS77s/s1600/1378734_10200504385432215_214273089_n.jpg)
La concentración inicial de ignorantes es
Discusión
En resumen, nuestros resultados proporcionan evidencia convincente de explosivos transiciones hacia la aceptación macroscópica de los fenómenos sociales. La naturaleza explosiva de estas transiciones tiene importantes implicaciones en escenarios sociales reales. Por ejemplo, puede representar barreras inesperadas y desafiantes para el control de las pandemias mundiales de los fenómenos sociales no deseado o, por el contrario, un escenario interesante para la difusión de productos e ideas innovadoras. El factor clave responsable de las transiciones de explosivos es la acción negativa sobre la transmisión de los vecinos ignorantes. Tal oposición impide que las transiciones a grande contagio hasta que la transmisión se vuelve lo suficientemente fuerte como para superar la resistencia de los contactos ignorantes. En este punto, una explosión a gran contagio se produce. Por lo tanto, contagios explosivas aparecen como subproducto de la inhibición de la epidemia de inicio hasta un punto en el que una avalancha macroscópica de contagios se produce inevitablemente. Tenga en cuenta que los mecanismos inhibitorios están ausentes en los modelos anteriores, donde la sinergia se asoció con los vecinos infectados de receptores [9,10]. Hemos comprobado que tal mecanismo sinérgico lleva a transiciones discontinuas en las epidemias del SIS para la sinergia constructiva, pero lo suficientemente transiciones en SIR propagación son continuos [9,10]. Por el contrario, la sinergia asociada con los vecinos ignorantes lleva a transiciones explosivos más ubicuos que se producen con y sin eliminación de difusores. Una vez más, esto pone de manifiesto el importante papel de los mecanismos inhibitorios sobre las transiciones explosivos.El mecanismo que conduce a contagios explosivos es una reminiscencia de la agrupación procesos propuestos en modelos [30,31,32,33,34,35] de percolación explosiva fusión. Sin embargo, estos modelos se basan en prejuicios externos a escala mundial para la fusión de clúster que favorece el retraso de la transición de percolación que a menudo carecen de una motivación y aplicación [31] clara. En nuestro caso, los contagios explosivos son el resultado de la acción combinada de los efectos sinérgicos locales, de acuerdo con las reglas microscópicos responsables de fenómenos de sincronización [36,37,38,39] explosiva, atascos en redes [40] complejo o epidemias [16,17,18] generalizadas. Hemos demostrado que la sinergia asociada con los vecinos ignorantes conduce a auténticos transiciones discontinuas en los gráficos al azar que implican una fracción relativa de hosts más pequeños de uno. Esto es similar a la fenomenología de percolación transiciones discontinuas de tipo II en processes35 fusión clúster.
Muy recientemente, también se han reportado las transiciones discontinuas de este tipo para procesos [41] de contacto, en la que el mecanismo de recuperación es similar a la del modelo SIS. Aquí hemos demostrado que las transiciones discontinuas de contagio global no sólo se observan en la dinámica del SIS, pero se predice robusta para los modelos con la recuperación permanente de crucetas. Tales modelos son sin duda más realista que los procesos de SIS y de contacto de la propagación de los fenómenos sociales. Es importante destacar que, aunque los efectos no lineales en las tasas de transmisión pueden promover transiciones [20,21] discontinua, la no linealidad no es la fuerza motriz responsable de contagios explosivas asociadas con la inhibición por conocidos ignorantes, puesto que se encuentran incluso para tasas sinérgicos débilmente no lineales .
Los mecanismos sinérgicos estudiados aquí y en nuestro trabajos [9,10] anteriores están asociados con el número de vecinos ignorantes de esparcidores o el número de vecinos de esparcidor de receptores, respectivamente. Sin embargo, nuestros modelos podrían ser fácilmente adaptados para estudiar los efectos de otros mecanismos sinérgicos asociados con, por ejemplo, la fracción relativa de vecinos ignorantes o esparcidor en lugar de su número [42,43,44]. Dada la heterogeneidad grado relativamente bajo de nodo de las redes consideradas en este trabajo, no prevemos diferencias cualitativas entre nuestros resultados y los de una velocidad de transmisión en función de la fracción de vecinos. Por el contrario, las diferencias podrían ser más importantes para la propagación en redes con más heterogénea nodo de grado (por ejemplo, en redes [23] libre de escala).
No hay comentarios:
Publicar un comentario