Mostrando entradas con la etiqueta complejidad. Mostrar todas las entradas
Mostrando entradas con la etiqueta complejidad. Mostrar todas las entradas

lunes, 24 de febrero de 2020

Contagios interactivos añaden complejidad a las epidemias

Contagios interactivos

Los contagios complejos, por ejemplo, cuando las ideas se extienden a través de una red, se consideran diferentes de los contagios simples observados para las infecciones. Ahora se muestra que los contagios simples exhiben una característica macroscópica clave del comportamiento complejo cuando interactúan.
Por Sune Lehmann - Springer Nature


Los procesos de difusión en las redes, como la propagación de enfermedades o ideas, funcionan constantemente en sistemas humanos que van desde el nivel microscópico de señalización en células individuales hasta el flujo de información en sistemas tecnológicos a escala global. Incluso cuando se restringen a las redes sociales, estos procesos son ubicuos en las sociedades dinámicas y en red de hoy en día: muchas infecciones se propagan de persona a persona, al igual que la información (y la desinformación). Los fenómenos sociales más complejos, como los comportamientos y las opiniones, también se propagan en las redes. El consenso científico solía ser que todas estas formas de propagación se regían por mecanismos similares, pero en los últimos años, ha surgido una distinción interesante entre el contagio simple y complejo de la literatura de difusión social 1. Ahora, escribiendo en Nature Physics, Laurent Hébert-Dufresne y sus colegas han argumentado que debido a que estos mecanismos de propagación fundamentalmente diferentes tienen una dinámica de nivel de población indistinguible cuando interactúan múltiples contagios, todos los procesos de propagación deben modelarse como complejos 2.

La idea detrás de la distinción entre contagios simples y complejos es que los mecanismos subyacentes a la propagación social son diferentes de los que dan forma a la propagación de la enfermedad 3. Para este último, lo único que importa es la duración de la exposición a agentes infecciosos. En el caso de contagios complejos, la exposición a múltiples fuentes tiene diferentes efectos que la misma cantidad de exposición a una sola fuente. Para comprender el mecanismo detrás de la difusión social compleja, quizás sea mejor usar un ejemplo. Intuitivamente, aprender durante un almuerzo de una hora que cinco de cada diez amigos que anteriormente habían comido carne eligieron volverse vegetarianos tendrá un impacto diferente que sentarse durante cinco horas con un amigo promoviendo los beneficios de una dieta libre de carne. La propagación a través de contagios simples no depende de que suceda nada más a los individuos infectados, mientras que en el caso de contagios complejos, el contexto del evento de contagio, como el número de fuentes u otras propiedades de la estructura de la red local, juega un papel clave. Es importante distinguir entre los dos mecanismos al analizar la propagación en las redes, ya que cada uno conduce a dinámicas sustancialmente diferentes, lo que a su vez puede dar lugar a conclusiones contradictorias sobre el riesgo potencial o la estrategia de intervención correcta.



Fig. 1 | Potencial latente. Dos enfermedades A y B se propagan a través de una red. Algunos de los individuos ya han sido infectados por la enfermedad A, haciéndolos más susceptibles a la enfermedad B. El grupo de individuos infectados por A constituye un potencial latente que permite grandes saltos en la fracción de la población infectada por B.

Hébert-Dufresne y sus colegas se centraron en una diferencia clave en la dinámica. En los modelos de contagio estándar, existe una relación directa entre la tasa de transmisión y el tamaño de la epidemia. Sin embargo, en el caso de contagios complejos, la dependencia del estado del vecindario de la red implica que cambios muy pequeños en la tasa de transmisión pueden conducir a saltos dramáticos en el tamaño esperado de una epidemia. La intuición aquí es que en el caso complejo, una población puede desarrollar un "potencial latente". Volviendo al ejemplo anterior, imagine que la fracción de vegetarianos aumenta lentamente en una población. A cierto valor de la fracción general de vegetarianos, la probabilidad de situaciones como el almuerzo discutido anteriormente será más probable y se producirá un cambio dramático en el número total de vegetarianos.

Trabajos recientes4–8 han argumentado que dos contagios que interactúan pueden resultar en un potencial latente similar en una población. Una de las formas en que dos infecciones distintas pueden interactuar es cuando la exposición a una infección debilita el sistema inmunitario de una persona haciéndola más susceptible a la segunda infección (Fig. 1). Por lo tanto, los individuos debilitados funcionan efectivamente de la misma manera que los vegetarianos en el ejemplo anterior, creando un potencial latente, que a su vez puede permitir que los saltos macroscópicos sean un sello distintivo de contagios complejos. En el caso de poblaciones bien mezcladas, donde cada individuo tiene la misma probabilidad de infectar a todos los demás, Hébert-Dufresne y sus colegas produjeron un mapeo de contagios interactivos a un contagio complejo, mostrando así de manera general que los contagios simples interactivos son un subconjunto de contagios complejos.

A primera vista, este hallazgo parece enturbiar las aguas. Sin embargo, cavando más profundo hay un lado positivo. Hébert-Dufresne y sus colegas argumentaron que, en casi todos los casos del mundo real, los contagios están, de hecho, interactuando. Incluso en el caso de patógenos individuales, puede haber saltos en el tamaño esperado de una epidemia cuando diferentes modos de transmisión tienen probabilidades de transmisión muy diferentes, por ejemplo, en la propagación del VIH a través de la transmisión sexual en comparación con el intercambio de agujas. Por esta razón, la visión central y simplificadora de este trabajo es que cuando solo hay datos disponibles a nivel de población, todos los contagios del mundo real deben modelarse como contagios complejos.

Utilizando su mapeo desde contagios simples interactivos hasta contagios complejos, los autores propusieron un marco de contagio complejo, completo con potentes procedimientos de inferencia, para modelar datos del mundo real. Este marco tiene varias ventajas prácticas para distinguir y clasificar contagios: por ejemplo, proporciona una forma directa de comparar contagios independientemente del tiempo y las condiciones iniciales.

Una de las limitaciones de este enfoque es que el mapeo desde contagios simples interactivos hasta comportamientos complejos se enfoca principalmente en poblaciones bien mezcladas en las cuales cualquiera puede infectar a cualquier otra persona. Sin embargo, la investigación sobre datos que describen los patrones de conexión entre humanos de redes sociales, llamadas telefónicas y muchas otras fuentes ha demostrado que esta suposición de mezcla completa es demasiado simplista. De hecho, la investigación existente sobre los procesos de difusión en redes empíricas sugiere que la estructura de red subyacente puede cambiar fundamentalmente el comportamiento de las características clave de dichos procesos 9.

Aunque Hébert-Dufresne y sus colegas consideraron algunos datos de la red, el foco principal estaba en simulaciones de redes sintéticas poco realistas y redes empíricas seleccionadas. Por lo tanto, un desafío futuro interesante será comprender más profundamente cómo la idea de contagios complejos, como un marco eficaz para todo tipo de contagios, debe aplicarse a los casos en los que se dispone de información detallada sobre la red subyacente y los patrones de infección.

❐ Sune Lehmann 1,2 
1 Departamento de Matemática Aplicada y Ciencias de la Computación, Universidad Técnica de Dinamarca, Kongens Lyngby, Dinamarca. 
2 Centro de Copenhague para la Ciencia de los Datos Sociales, Universidad de Copenhague, Copenhague, Dinamarca. correo electrónico: sljo@dtu.dk 
Publicado: 24 de febrero de 2020
https://doi.org/10.1038/s41567-020-0817-9 

Referencias 

1. Centola, D. & Macy, M. Am. J. Sociol. 113, 702–734 (2007). 
2. Hébert-Dufresne, L., Scarpino, S. V. y Young, J.-G. Nat. Phys. https://doi.org/10.1038/s41567-020-0791-2 (2020). 
3. Lehmann S. y Ahn, Y. Y. (eds) Fenómenos de difusión complejos en sistemas sociales (Springer, 2018). 
4. O'Sullivan, D. J., O'Keeffe, G. J., Fennell, P. G. y Gleeson, J. P. Front. Phys. 3, 71 (2015). 
5. Funk, S. y Jansen, V. A. Phys. Rev. E 81, 036118 (2010). 
6. Marceau, V., Nöel, P.-A., Hébert-Dufresne, L., Allard, A. y Dubé, L. J. Phys. Rev. E 84, 026105 (2011). 
7. Bauch, C. T. y Galvani, A. P. Science 342, 47–49 (2013). 
8. Fu, F., Christakis, N. A. y Fowler, J. H. Sci. Rep. 7, 43634 (2017). 
9. Holme, P. y Saramäki, J. Phys. Rep. 519, 97-125 (2012).



martes, 2 de octubre de 2018

Transiciones de fase en percolación de redes

Transiciones de fase manchadas en percolación en redes complejas reales

Laurent Hébert-Dufresne, Antoine Allard



arXiv.org > physics > arXiv:1810.00735

La percolación en redes complejas se usa tanto como modelo para la dinámica en redes, para evaluar la solidez de una red o la propagación de epidemias, y como un punto de referencia para nuestros modelos de redes, donde nuestra capacidad de predecir la percolación mide nuestra capacidad para describir las redes en sí mismas. En muchas aplicaciones, la identificación correcta de la transición de fase de la percolación en las redes del mundo real es de importancia crítica. Desafortunadamente, esta transición de fase está perjudicada por el tamaño finito de los sistemas reales, lo que dificulta la distinción entre los efectos de tamaño finito y la inexactitud de un enfoque determinado que no logra captar características estructurales importantes. Aquí, tomamos prestada la perspectiva de las transiciones de fase difuminadas y argumentamos que muchas discrepancias observadas se deben a la compleja estructura de las redes reales en lugar de a los efectos de tamaño finito solamente. De hecho, varias redes reales utilizadas a menudo como puntos de referencia presentan una transición de fase difuminada en la que las inhomogeneidades en la distribución topológica del parámetro de orden no desaparecen en el límite termodinámico. Encontramos que estas transiciones difuminadas a veces se describen mejor como transiciones de fase secuenciales dentro de subsistemas correlacionados. Nuestros resultados arrojan luz no solo sobre la naturaleza de la transición de la percolación en sistemas complejos, sino que también brindan dos ideas importantes sobre las herramientas analíticas y numéricas que utilizamos para estudiarlos. Primero, proponemos una medida de la susceptibilidad local para detectar mejor las transiciones de fase tanto limpia como manchada al observar la variabilidad topológica del parámetro de orden. En segundo lugar, destacamos una deficiencia en los enfoques analíticos de vanguardia, como el paso de mensajes, que pueden detectar transiciones difusas, pero no caracterizar su naturaleza.



martes, 11 de septiembre de 2018

Contagio complejo a partir de contagio simple


Procesos de contagio en competencia: contagio complejo desencadenado por contagio simple


Byungjoon Min & Maxi San Miguel

Scientific Reports
volume 8, Número de artículo: 10422 (2018)
Nature


Resumen
La evidencia empírica revela que los procesos de contagio ocurren a menudo con la competencia del contagio simple y complejo, lo que significa que mientras algunos agentes siguen un contagio simple, otros siguen un contagio complejo. El contagio simple se refiere a los procesos de propagación inducidos por una única exposición a una entidad contagiosa, mientras que el contagio complejo exige exposiciones múltiples para la transmisión. Inspirados por esta observación, proponemos un modelo de dinámica de contagio con una probabilidad de transmisión que inicia un proceso de contagio complejo. Con esta probabilidad, los nodos sujetos a contagio simple se adoptan y desencadenan un proceso de contagio complejo. Obtenemos un diagrama de fase en el espacio de parámetros de la probabilidad de transmisión y la fracción de nodos sujetos a un contagio complejo. Nuestro modelo de contagio exhibe una rica variedad de transiciones de fase tales como transiciones de fase continua, discontinua e híbrida, criticidad, tricriticidad y transiciones dobles. En particular, encontramos una transición de doble fase que muestra una transición continua y una siguiente transición discontinua en la densidad de los nodos adoptados con respecto a la probabilidad de transmisión. Mostramos que la doble transición ocurre con una fase intermedia en la que los nodos que siguen al contagio simple se adoptan, pero los nodos con un contagio complejo continúan siendo susceptibles.

Introducción

Los modelos de contagio social y biológico en general se dividen en dos clases según la respuesta a las exposiciones sucesivas: contagio simple y complejo1,2,3,4,5,6,7,8,9,10,11,12. El contagio simple, inspirado principalmente en la diseminación de la enfermedad, representa un proceso de contagio con interacción independiente entre lo susceptible y lo infeccioso5,7,13,14,15,16,17,18,19. Los modelos típicos de epidemias compartimentales, como el modelo susceptible-infectado-recuperado5,13,15,16 y el modelo sensible susceptible-infectado5,14,16, pertenecen a la clase de procesos simples de contagio. Los modelos de contagio simple están controlados por una probabilidad de infección independiente del número de exposiciones. Típicamente, un modelo de contagio simple muestra una transición de fase continua entre una fase epidémica y una fase libre de enfermedad para un valor crítico de la probabilidad de infección. La otra clase de procesos de contagio es el contagio complejo que representa los fenómenos de propagación en los que se necesitan múltiples exposiciones a una entidad en expansión para cambiar el estado de los agentes8,9. Los modelos de procesos complejos de contagio abarcan una amplia gama de modelos contagiosos, como el modelo de umbral4,6,20, el modelo epidémico generalizado21,22,23,24,25, la percolación por difusión26, el aprendizaje de umbral27,28 y la percolación de bootstrap29. La difusión de las modas, las ideas y las nuevas tecnologías en nuestra sociedad se describe mejor por un contagio complejo más que por un simple contagio debido a un efecto colectivo en el contagio social30,31,32,33,34,35. La diferencia fundamental del contagio complejo en comparación con los procesos simples de contagio es que la probabilidad de adopción depende del número de exposiciones. Por ejemplo, en el modelo de umbral, la adopción de una nueva innovación ocurre cuando el número de vecinos adoptados es mayor que un cierto umbral4,6. Los modelos de contagio complejo a menudo dan como resultado una transición de fase discontinua en contraste con la transición de fase continua del contagio simple6,33,36,37,38,39.

Los modelos de contagio clásico suponen que la entidad contagiosa determina el tipo de contagio, ya sea simple o complejo16,30. Recientemente, el análisis exhaustivo de la difusión de un perfil de igual signo en un servicio de redes sociales (SRS) 40,41,42 arroja luz sobre los mecanismos de los procesos de contagio entre los susceptibles y los adoptados. El análisis de los datos empíricos muestra que las características de los agentes también afectan el tipo de contagio41. Específicamente, se observa que el número de exposiciones exitosas que requieren adopción es muy diferente para diferentes individuos41. En esta observación, algunos agentes cambian su perfil en SNS justo después de la primera exposición al meme (contagio simple), pero los otros necesitan más exposiciones para ser adoptados (contagio complejo). Esto implica una competencia entre el contagio simple y el complejo en función de la adoptabilidad de los agentes, que se desvía de la visión tradicional de los modelos de contagio. La heterogeneidad de la adoptabilidad puede extenderse a muchos fenómenos de propagación debido a la diversidad individual de terquedad, credo e información preexistente. Estos hechos requieren incorporar tal heterogeneidad al modelar los procesos de contagio que integran el contagio simple y complejo43,44,45,46,47. Incorporando tal heterogeneidad, aquí proponemos un modelo de contagio que además considera una probabilidad de transmisión en el proceso de contagio que actúa como una probabilidad de infección en modelos epidémicos o una probabilidad de ocupación en los procesos de percolación de bonos en una red. Representa una prueba de transmisión de vecinos adoptados, antes de los procesos de adopción posteriores. Efectivamente, la probabilidad de transmisión actúa como un simple proceso de contagio que desencadena un proceso de contagio complejo.

En nuestro modelo de procesos de contagio con probabilidad de transmisión, unificamos el contagio simple y complejo al considerar agentes con adoptabilidad heterogénea. Asignamos explícitamente un nivel diferente de adoptabilidad para que los individuos imiten la heterogeneidad de la adoptabilidad observada en los datos empíricos41. La probabilidad de transmisión modela la posibilidad de transmitir e identificar conexiones exitosas (activas) para procesos de adopción. Con estas generalizaciones, nuestro modelo incluye una variedad de modelos de contagio, como el modelo susceptible infectado-recuperado13, el modelo de umbral4,6, la percolación de difusión26 y la percolación de bootstrap48. Nuestro modelo de contagio generalizado presenta una gran variedad de fenómenos que incluyen transiciones de fase continua, discontinua e híbrida, criticidad, tricriticidad y transiciones dobles. Mostramos que una doble transición con una fase intermedia puede ocurrir cuando un sistema está compuesto de nodos con adoptabilidad heterogénea.

Modelo de Contagio Generalizado

Consideramos una red con N nodos que pueden estar en un estado susceptible o adoptado. La adoptabilidad θ de cada nodo se extrae al azar de una distribución Q (θ). Para ser específico, θ representa la cantidad de exposiciones exitosas requeridas para cambiar de susceptible a adoptado. Por ejemplo, cuando θ = 1, un nodo se adopta después de una sola exposición exitosa, lo que indica un contagio simple, mientras que cuando θ> 1, representa un nodo de contagio complejo ya que se necesitan múltiples exposiciones para su adopción. Variando la adoptabilidad θ, podemos describir procesos de contagio simples y complejos. La posibilidad de transmisión está determinada por una probabilidad de transmisión λ. Cada nodo adoptado intenta propagarse con la probabilidad λ y, por lo tanto, podemos identificar conexiones activas entre el susceptible y el adoptado. Al presentar la distribución de la adoptabilidad Q (θ) y la probabilidad de transmisión, unificamos los dos mecanismos de contagio y sugerimos un modelo de contagio generalizado. Vale la pena señalar que se consideró la adoptabilidad heterogénea pero sin una probabilidad de transmisión en el modelo de umbral4,42, la percolación heterogénea del núcleo k45,46 y un modelo de partículas estocásticas que interactúan49.

En nuestro modelo, la dinámica es en tiempo discreto. Inicialmente, todos los nodos son susceptibles excepto una fracción ρ de nodos de semilla que se adoptan. Los nodos recién adoptados intentan la transmisión con una probabilidad λ a todos sus vecinos susceptibles en el mismo paso de tiempo. En el siguiente paso, cada nodo susceptible actualiza el número de transmisiones exitosas y se adopta si el número de exposiciones exitosas es igual o mayor que su umbral. Más detalladamente: supongamos que un nodo adoptado i prueba la transmisión a su vecino susceptible j con una probabilidad λ. Si la transmisión es exitosa, el enlace de i a j se activa y con la probabilidad complementaria 1 - λ, el enlace permanece inactivo. Entonces, el nodo susceptible j se adopta cuando el número de exposiciones exitosas (equivalentemente el número de enlaces activos hacia el nodo j) excede o iguala su adoptabilidad θj. Este proceso continúa hasta que no haya más agentes recién adoptados en una red.

Los principales parámetros de nuestro modelo son λ y Q (θ) que reflejan respectivamente el grado de transmisibilidad de una entidad contagiosa y la distribución de adoptabilidad de los nodos. Dependiendo de estos dos parámetros, nuestro modelo se convierte en uno de una amplia gama de modelos de contagio. El modelo susceptible-infectado-recuperado13,15 se recupera cuando (λ, Q (θ)) = (λ, δθ, 1) donde δi, j representa la función delta Kronecker (la función es 1 si i = j y 0 en caso contrario) . Difusión percolación26 corresponde a (λ, Q (θ)) = (1, δθ, n> 1) donde n es cualquier número entero mayor que la unidad, mientras que el modelo de umbral 6 de Watts corresponde a (λ, Q(θ)) = \((1,{\delta }_{\theta ,{k}_{i}T})\) donde T es un umbral y ki es el grado de nodo i.

La Figura 1 muestra un ejemplo de nuestro modelo de contagio generalizado con Q(θ) = (1 − p)δθ,1 + θ,2. Una fracción (1 - p) de nodos denotados por círculos sigue un contagio simple  (θ = 1) y una fracción p de nodos denotados por cuadrados sigue un contagio complejo que requiere múltiples exposiciones exitosas para adoptar  (θ > 1). Inicialmente, todos los nodos son susceptibles excepto una semilla indicada con un símbolo de estrella [Fig. 1 (a)]. A continuación, los nodos adoptados intentan diseminar la entidad contagiosa con una probabilidad λ. Si una prueba tiene éxito, un nodo susceptible está expuesto a una entidad contagiosa (indicada por una línea gruesa). Tenga en cuenta que un solo éxito de transmisión no siempre da como resultado la adopción porque el contagio complejo requiere múltiples exposiciones exitosas. Cuando el número de exposiciones exitosas excede o iguala la adoptabilidad θ de un nodo, un nodo susceptible pasa al estado adoptado (símbolos rellenos) [Fig. 1 (b-d)]. Eventualmente, medimos la fracción final de los nodos adoptados R en el estado estacionario.

Figura 1

Un ejemplo de nuestro modelo de procesos de contagio con una probabilidad de transmisión que unifica el contagio simple y complejo. En este ejemplo, cinco nodos (círculos) de nueve nodos siguen un contagio simple y tres nodos (cuadrados) siguen un contagio complejo que requiere la adopción de dos exposiciones. La dispersión comienza desde una semilla (símbolo de estrella) y los nodos susceptibles (símbolos abiertos) se adoptan (símbolos rellenos) cuando el número de exposiciones exitosas excede o iguala su adoptabilidad asignada, ya sea 1 por contagio simple o 2 por contagio complejo.

Aproximación analítica

Para predecir la fracción final de los nodos adoptados, derivamos ecuaciones de campo medio asumiendo una estructura de tipo árbol local en el límite N → ∞. Nuestra aproximación es exacta en una estructura de árbol y da muy buen acuerdo con simulaciones numéricas para gráficos aleatorios dispersos con solo bucles infinitos. Nuestro enfoque se basa en desarrollos teóricos recientes para el modelo de umbral de cascada en redes36. Una técnica de función generadora desarrollada para un modelo de procesos de percolación15 también comparte la idea de nuestro tratamiento analítico. Dada una distribución de grados P (k) y una distribución de adoptabilidad Q (θ), la fracción final esperada de los nodos adoptados R de una fracción de nodos iniciales de semillas ρ (elegidos aleatoriamente) puede expresarse como 15,36 [ver detalles en Información complementaria] ,
R = ρ + (1-ρ) Σk = 0∞P (k) Σm = 0k (km) qm∞ (1-q∞) k-mΣθ = 1∞Q (θ) [1-Σs = 0θ-1 (ms) λs (1-λ) m-s].
(1)

Aquí q∞ es la probabilidad de estado estable de que un nodo se adopte siguiendo un enlace elegido al azar, y λ es la probabilidad de transmisión entre el susceptible y el adoptado. El término (km) qm∞ (1-q∞) k-m
corresponde a la probabilidad de tener m vecinos adoptados de k vecinos. Y, [1-Σθ-1s = 0 (ms) λs (1-λ) m-s]

representa la probabilidad de que el número de exposiciones exitosas con la probabilidad de transmisión λ de m vecinos adoptados exceda o iguale la adoptabilidad θ. En general, Eq. 1 corresponde a la probabilidad de que un nodo elegido al azar sea un nodo semilla con probabilidad ρ o no sea una semilla con la probabilidad (1 - ρ) pero finalmente se adopte en el proceso dinámico.

La probabilidad q∞ se puede obtener resolviendo una ecuación recursiva. Primero definimos qt como la probabilidad de que un nodo sea adoptado siguiendo un enlace elegido al azar en el nivel t. En un gráfico similar a un árbol local, qt se puede obtener mediante (derivación en Información complementaria)
qt + 1 = ρ + (1-ρ) Σk = 1∞kP (k) ⟨k⟩Σm = 1k-1 (k-1m) qmt (1-qt) k-m-1Σθ = 1∞ Q (θ) [1-Σs = 0θ-1 (ms) λs (1-λ) m-s].
(2)

El punto fijo de la ecuación anterior corresponde a q∞ a partir del valor inicial q0 = ρ. En general, obtenemos q∞ resolviendo iterativamente Eq. 2 y obtenga R reemplazando el valor obtenido para q∞ en Eq. 1.

Desarrollamos aún más la teoría para un gráfico Erdös-Rényi (ER) con un grado promedio z como un ejemplo simple. Los gráficos de ER en el límite N → ∞ satisfacen claramente la estructura de tipo árbol local y, por lo tanto, nuestro cálculo teórico proporciona una buena aproximación. Usando la distribución de grados P (k) = e-zzk / k !, la fracción final de los nodos adoptados R se convierte en lo mismo que q∞ ya que las ecuaciones 1 y 2 se vuelven equivalentes. Entonces, la ecuación de autoconsistencia simplemente se expresa como
R == ρ + (1-ρ) Σ∞θ = 1Q (θ) [1-e-zλRΣθi = 1 (zλR) i-1 (i-1)!] Ρ + (1-ρ) Σ∞ θ = 1Q (θ) [1-Γ (θ, zλR) Γ (θ)],
(3)

donde Γ (x) es la función gamma y Γ (x, y) es la función gamma incompleta. Por lo tanto, para redes ER, podemos obtener el punto fijo de R directamente resolviendo la ecuación de autoconsistencia anterior.

Resultados

Diagrama de fases


En aras de la simplicidad, consideramos un modelo con una distribución bimodal de la adoptabilidad Q (θ) = (1 - p) δθ, 1 + pδθ, n en las redes ER. En esta configuración, una fracción (1 - p) de nodos sigue un contagio simple con θ = 1 (nodos simples) y una fracción p de nodos sigue un contagio complejo que requiere la adopción de exposiciones exitosas (nodos complejos). Entonces tenemos tres parámetros, p, n, y λ que corresponden respectivamente a la fracción de nodos complejos, el número de exposiciones exitosas requeridas para que los nodos complejos lo adopten, y la probabilidad de transmisión. Suponiendo además que la densidad inicial de los nodos de semilla es insignificante, es decir, ρ → 0, la ecuación de autoconsistencia se convierte en 

R = (1-p) (1-e-zλR) + p [1-Γ (n, zλR) Γ (n)]. (4)El primer término corresponde a la contribución de nodos simples y el segundo término corresponde a la de nodos complejos.Para identificar un punto fijo de Eq. 4, definimos f (R) = - R + (1-p) (1-e-zλR) + p [1-Γ (n, zλR) Γ (n)]. Entonces, los puntos fijos R * están dados por los ceros de f (R *) = 0. Encontramos que la solución trivial R * = 0 indica una fase libre de adopción donde la adopción no ocurre tanto para nodos simples como complejos. La fase de adopción que muestra la densidad no nula de los nodos adoptados (R> 0) aparece en el punto donde la solución trivial R * = 0 se vuelve inestable. El análisis de estabilidad lineal implica que la fase libre de adopción es estable cuando f '(0) <0 mientras que se vuelve inestable si f' (0)> 0. Por lo tanto, la transición entre la fase libre de adopción (R = 0) y la fase de adopción (R> 0) se produce en f '(0) = 0 donde f' (R) = - 1+ (1-p) (zλ) e-zλR + p (zλ) nRn-1Γ (n) e-zλR. A partir de la condición f '(0) = 0, obtenemos el punto de transición λ1 para cualquier entero positivo n,



λ(n,p)1=(1z1z(1p)ifn=1,ifn>1.
(5)


cuando n = 1, todos los nodos son nodos simples, lo que significa que el modelo vuelve a un contagio simple ordinario, es decir, esencialmente el mismo que el modelo infectado infectado susceptible13. Por lo tanto, se recupera el umbral para el modelo de contagio simple 1 / z15. Cuando n> 1, obtenemos un factor adicional (1 - p) que corresponde a la fracción de nodos simples.

La naturaleza de la transición en λ1 está determinada por la segunda derivada de f (R). Si bien la transición es continua si f "(0) <0, se vuelve discontinua si f" (0)> 0. Aplicando esta condición a f '' (R) = - (1-p) (zλ) 2e-zλR-p (1-n + zλR) (zλ) nRn-2Γ (n) e-zλR, encontramos que f "(0) <0 para todos los valores de p if n> 2. Por lo tanto, la transición en λ1 siempre es continua si n> 2. Sin embargo, cuando n = 2, f" (0) <0 para p <0.5 yf "(0)> 0 para p> 0.5, por lo que la transición es continua si los nodos simples tienen una mayoría (p <0.5) y son discontinuos si los nodos complejos tienen una mayoría (p> 0.5). En este caso de n = 2, podemos identificar un punto tricrítico (λtc, ptc) = (2 / z, 1/2) al imponer la condición f "(0) = f '(0) = f (0) = 0 donde las líneas de transición continuas y discontinuas se encuentran. En el punto tricrítico, el tamaño del salto discontinuo para p <0.5 se reduce a cero.

En el diagrama de fase con n = 2 para redes ER con z = 10 [Fig. 2 (a)], encontramos líneas de transición continuas (discontinuas) y discontinuas (sólidas) y un punto tricrítico (λtc, ptc) = (0.2, 0.5) en el cual las dos líneas se encuentran [Fig. 2 (a)]. Para p <ptc, la transición en λ1 es continua con el comportamiento de escalado R~ (λ-λ1) β1 y el exponente β1 = 1 (derivación en Información Complementaria), el mismo que el exponente de campo medio de una percolación de enlace ordinaria15. Acercándonos al punto tricrítico, obtenemos un escalamiento diferente R~ (λ-λtc) βtc con βtc = 1/2 (derivación en Información Complementaria). Para p> ptc, la transición en λ1 se vuelve discontinua. En el recuadro de la Fig. 2 (a), se muestra la solución gráfica f (R) con respecto a R en p = ptc con λ = 0.1, 0.2, 0.3. Los ceros de f (R) corresponden al punto fijo y λ = 0.2 corresponde al punto tricrítico λtc en nuestro ejemplo con z = 10. En la fase libre de adopción, existe solo una solución trivial que es R * = 0. Cuando λ es mayor que el valor de punto tricrítico (λ> λtc), aparece una nueva solución estable en un valor distinto de cero de R * y R * = 0 la solución se vuelve inestable.

 

Figura 2

Diagrama de fase de un modelo de contagio generalizado con (a) n = 2 y (b) n> 2 para redes de ER con z = 10. Las líneas de transición continuas y discontinuas se indican respectivamente como líneas punteadas y sólidas, y (tri) puntos críticos son indicado por círculos llenos. La solución gráfica de f (R) en p = ptc = 1/2 y λ = 0.1, 0.2 (λtc), 0.3 se muestra en el recuadro de (a). (c) Se muestra la solución gráfica de f (R) con n = 4, p = 0,8 y λ = 0,4, 0,6, 0,723 (λ2), 0,8.



Para n> 2, además de la transición continua en λ1 con el exponente crítico β1 = 1 para todo n> 2, hay otra transición en λ (n, p) 2 que es discontinuo, indicado por una línea continua [Fig. 2 (b)]. Vale la pena observar que λ2 es mayor que λ1 para cualquier n> 2. La ubicación de λ2 puede identificarse analíticamente desde la condición f '(R *) = 0 con R * ≠ 0. Cuando n> 2, la transición continua la línea λ1 y la línea discontinua λ2 están separadas y no se encuentran. Por lo tanto, la tricriticidad a la que se unen las líneas de transición continuas y discontinuas es un comportamiento peculiar que solo se encuentra en n = 2. El tamaño del salto discontinuo en λ2 disminuye al disminuir p y se pone a cero en un punto crítico (λc, pc) indicado por un círculo relleno, en el que f "(R *) = f '(R *) = 0. Por lo tanto, la línea de transición discontinua termina en el punto crítico y no hay la segunda transición de fase cuando p <pc. En este régimen (p <pc), R aumenta gradualmente sin discontinuidad cuando aumenta λ con λ> λ1. Además, el salto discontinuo y el punto crítico pueden desaparecer a medida que n aumenta para una z dada, es decir, para z = 10, no hay una segunda transición cuando n> 7.

Cuando p> pc (n) con n> 2, la fase de adopción se separa en dos fases distintas por un límite en λ2: fases de adopción simple (R bajo) y adopción compleja (R alto). Además, la transición en λ2 tiene características híbridas que muestran discontinuidad y un comportamiento de escalamiento, R (λ2) -R~ (λ2-λ) β (n> 2) 2
con el exponente β (n> 2) 2 = 1/2 para cualquier n> 2 (derivación en Información Complementaria). Además, cuando λ se aproxima al punto crítico aparece una escala de raíz cúbica como R-R (λc) ~ (λ-λc) βc

donde βc = 1/3 (derivación en Información Complementaria). Esta es la misma escala que se encuentra en la percolación heterogénea del núcleo k46. Dicha transición de fase híbrida también conocida como transición de fase mixta se ha observado ampliamente en la percolación cooperativa en redes como la percolación de núcleo k46,50,51, la percolación de bootstrap48, la percolación de redes interdependientes52,53,54 y los procesos epidémicos cooperativos22,23,24. , 25. También se predice una transición híbrida en un modelo de cadenas de espín con interacciones de largo alcance55, desnaturalización de ADN56 y atasco57,58, y recientemente se ha observado experimentalmente en un cristal coloidal59.

Un ejemplo de cómo identificar una transición de fase se muestra en términos de la solución gráfica de f (R) con z = 10 yn = 4 en el límite ρ → 0 [Fig. 2 (c)]. Los ceros de f (R) dan los valores de punto fijo de R y su estabilidad está dada por la derivada de f (R). Primero, R permanece cero para λ <λ1. Cuando λ1 <λ <λ2, R aumenta gradualmente a medida que λ aumenta hasta la segunda transición en λ = λ2. Como λ aumenta aún más λ> λ2, una fase de adopción compleja (R ≈ 0.92) aparece repentinamente a partir de la fase de adopción simple (R ≈ 0.18). Por lo tanto, nuestro análisis predice la aparición de una doble transición que muestra una transición continua y una posterior discontinua.
Transiciones continuas, discontinuas y de doble fase

Examinamos el diagrama de fase y la fracción de nodos adoptados para dos escenarios específicos donde n = 2 [Fig. 3 (a)] yn = 4 [Fig. 3 (b)] en redes de ER con z = 10. Para n = 2, cuando p <0.5 ocurre una transición de fase continua típica en λ1 [Fig. 3 (a)]. Pero, cuando más de la mitad de los nodos siguen un contagio complejo (p> 0.5), la transición entre la fase libre de adopción y la fase de adopción se vuelve discontinua. Tal discontinuidad desaparece en un punto tricrítico en el que (λtc, ptc) = (0.2, 0.5) con z = 10. Por lo tanto, para n = 2 y variando λ hay una transición única en λ1 ya sea continua para p <ptc o discontinua para p> ptc.

Figura 3


Diagrama de fase de un modelo de contagio generalizado con (a) n = 2 y (b) n = 4 que muestra la fracción final de los nodos adoptados R. Las líneas de transición continuas y discontinuas se indican respectivamente como líneas punteadas y sólidas, y (tri) puntos críticos están indicados por círculos llenos. (c) La fracción final de los nodos adoptados R frente a λ con n = 4 para las redes ER con N = 105 yz = 10, promediados en 104 ejecuciones independientes. Las simulaciones numéricas (símbolo) y el cálculo teórico (línea) se muestran juntas. Las barras de error son más pequeñas que los símbolos.


Sin embargo, para n = 4, encontramos que las líneas de transición continuas y discontinuas están separadas [Fig. 3 (b)]. Para ser específico, en un p> pc dado, la ubicación de la transición discontinua λ2 aparece en un valor λ> λ1. El tamaño del salto disminuye al disminuir p y el salto desaparece en un punto crítico (λc, pc) = (0.59, 0.71). Por lo tanto, por encima del punto crítico (p> pc), el tamaño de los nodos adoptados R cambia bruscamente de la fase de adopción simple (R bajo) a la fase de adopción compleja (R alto) en λ = λ2. Por el contrario, por debajo del punto crítico (p <pc), R cambia gradualmente sin discontinuidad, por lo que ya no existe una clara distinción entre la fase de adopción simple y la fase de adopción compleja.

Las transiciones continuas y discontinuas con n = 4 yz = 10 para p = 0.2, 0.4, 0.6 y 0.8 se muestran en la figura 3 (c). Primero notamos que la teoría (línea) y las simulaciones numéricas (símbolo) de R para redes de ER con N = 105 y 100 nodos de semilla muestran un acuerdo perfecto. Además, se resalta la marcada diferencia entre un salto discontinuo para p> pc y un aumento gradual de R para p <pc. Tenga en cuenta que la fracción de la semilla inicial no puede ser despreciable en las redes de tamaño finito simuladas mientras se vuelve asintóticamente pequeña en el límite termodinámico N → ∞.

Además, cuando p> pc, por ejemplo p = 0.8, el sistema experimenta una transición de fase doble con λ creciente: una transición continua de fase de adopción a fase de adopción simple, seguida de una siguiente transición discontinua entre la fase de adopción simple y un complejo fase de adopción. Recientemente, se han observado transiciones múltiples en un proceso de tipo de percolación en redes diseñadas de forma complicada, como redes agrupadas60 y redes interdependientes61, o con protocolos de percolación no triviales, como la percolación explosiva62,63 y la percolación asimétrica64. En este estudio, sin embargo, encontramos una doble transición en redes aleatorias simples como resultado de procesos de contagio competitivos. Vale la pena observar que en el caso límite λ = 1, nuestro modelo comparte una similitud con la percolación de núcleos k heterogéneos que también muestra una transición múltiple46.

Mecanismo de transición de doble fase y fase mixta

El mecanismo subyacente de la transición de doble fase se ilustra en la figura 4 (a), para redes ER con z = 10, n = 4 yp = 0,8. En una fase libre de adopción (λ <λ1), la mayoría de los nodos, independientemente de ser nodos de contagio simples o complejos, siguen siendo susceptibles excepto las semillas iniciales. En λ1, los nodos simples comienzan a adoptarse continuamente y el sistema se convierte en la fase de adopción simple (R bajo). A medida que aumenta λ por encima de λ1, se adoptan cada vez más nodos simples. Pero, los nodos complejos siguen siendo susceptibles hasta que λ llegue a la segunda transición λ = λ2. Por lo tanto, en la fase de adopción simple (λ1 <λ <λ2) se adoptan nodos de contagio simples, mientras que la mayoría de los nodos de contagio complejos aún son susceptibles. Como λ aumenta aún más, en la segunda transición λ = λ2 un grupo de nodos con contagio simple o complejo se adopta abruptamente. Por lo tanto, en la fase de adopción compleja (λ> λ2) la mayoría de los nodos se adoptan, lo que lleva a R. alta Nuestras simulaciones numéricas para el comportamiento de la susceptibilidad de R en el límite ρ → 0 son compatibles con una doble transición (ver Información complementaria) .

Figura 4


(a) La fracción final de los nodos adoptados R en función de λ se muestra para las redes ER con N = 105, z = 10, n = 4 yp = 0,8 (p> pc). Los ejemplos de red se obtienen con los mismos parámetros pero para una red pequeña N = 103 para ilustración. Los nodos susceptibles con un contagio simple y complejo se indican con símbolos de color rojo claro y azul claro, respectivamente. Los nodos adoptados con un contagio simple y complejo se representan como rojo oscuro y azul oscuro, respectivamente. (b) Se muestra la fracción final de nodos adoptados con contagio simple Rs y contagio complejo Rc. (c) R y (d) Rs y Rc se muestran para p = 0,4 (p <pc), desapareciendo la distinción entre la fase de adopción simple y la fase de adopción compleja.

La fracción final de los nodos adoptados con el contagio simple Rs y el contagio complejo Rc muestra claramente la diferencia entre la fase de adopción simple y la fase de adopción compleja, así como los diferentes mecanismos que conducen a estas dos transiciones [Fig. 4 (b)]. En la fase de adopción simple, algunos de los nodos simples se adoptan pero los nodos complejos permanecen susceptibles de modo que Rc permanece en cero y Rs tiene un valor finito. Sin embargo, en la fase de adopción compleja, se adoptan ambos tipos de nodos, de modo que tanto Rs como Rc muestran un valor alto después de un salto discontinuo en λ2. Tenga en cuenta que el máximo de Rs es 0.2 y el de Rc es 0.8 porque p = 0.8 en este ejemplo.

Cuando p <pc, la transición discontinua desaparece y existe una única transición continua en λ1 [Fig. 4 (c)]. Como ejemplo, para p = 0.4 que es menor que pc = 0.71, tanto los nodos simples como los nodos complejos comienzan a adoptarse en λ1. Y la fracción de nodos adoptados con Rs simple y la adopción compleja de Rc aumenta gradualmente [Fig. 4 (d)]. En la ilustración de red para λ = 0.4 [Fig. 4 (c)], podemos observar simultáneamente nodos simples y nodos complejos que están en el estado adoptado. En esta fase mixta, los nodos simples y complejos están estrechamente interrelacionados y ya no es posible distinguir claramente entre una fase de adopción simple y una compleja.

Discusión

En este estudio, hemos propuesto un modelo generalizado de procesos de contagio que unifica el contagio simple y complejo al introducir una adoptabilidad heterogénea Q (θ) junto con una probabilidad de transmisión o probabilidad de activación de enlace que mediante un mecanismo de contagio simple desencadena un contagio complejo en cascada. Nuestro modelo da lugar a diversas transiciones de fase, como una transición continua desde fase de adopción a fase de adopción, una transición discontinua (híbrida) entre baja adopción y alta fase de adopción, tricriticidad en la que se encuentran dos líneas de transición continua y discontinua, criticidad donde la transición discontinua desaparece, y una doble transición que muestra la sucesión sucesiva de transiciones de fase continuas y discontinuas al variar la probabilidad de transmisión λ. Específicamente, cuando n = 2, una transición continua se vuelve discontinua en un punto tricrítico. Además, cuando n> 2 líneas de transición continuas y discontinuas se separan y dos transiciones pueden ocurrir secuencialmente con el aumento de λ, lo que lleva a una doble transición. Nuestro modelo proporciona una dirección para estudiar los procesos generales de contagio y muestra que la heterogeneidad en la respuesta de los agentes a la adopción altera significativamente las consecuencias de los procesos de contagio. Es posible que se necesiten más estudios para confirmar el efecto de tamaño finito de la fracción de los nodos de semilla, el efecto de la heterogeneidad en la topología de la red y las distribuciones de adoptabilidad más generales, para nombrar unos pocos.

viernes, 8 de junio de 2018

Redes, historia y complejidad

Redes e historia

Peter Bearman,
Instituto de Investigación y Política Social y Económica, Universidad de Columbia, Nueva York, NY 

James Moody, y 
Departamento de Sociología, Universidad Estatal de Ohio, Columbus, OH 
Robert Faris
Departamento de Sociología, Universidad de Carolina del Norte en Chapel Hill


Fuente

Los eventos y las estructuras de eventos componen los elementos constitutivos de la historia. Para construir relatos históricos de secuencias de eventos, los historiadores tienen que hacer casos. Este artículo propone un método para encajonar eventos históricos. Ilustramos la estrategia analítica al considerar una compleja población de eventos interrelacionados que conforman una narrativa de revolución, contrarrevolución y revolución en una pequeña aldea en China. Se discuten las implicaciones para la metodología de las ciencias sociales históricas.


En contraste con los argumentos excesivamente deterministas sobre las causas fundamentales, las narrativas imaginativas de la cate nación fortuita de los eventos contingentes como reveladores del proceso histórico son la moda actual en la ciencia social histórica. Al servicio de tales narrativas, las imágenes de red a menudo se despliegan para describir las vías contingentes aparentemente frágiles a través de las cuales ocurren resultados históricos complejos. A primera vista, las redes parecen proporcionar una metáfora apropiada para el azar y la contingencia, pero este no es el caso. En cambio, la consideración de las estructuras de red en el contexto histórico sugiere roles limitados para la contingencia en la dinámica de eventos. En consecuencia, las estructuras de eventos históricos que aparecen como casos en la historia de las ciencias sociales son mucho más sólidas de lo que se suele imaginar. Sin embargo, algunos eventos pueden jugar papeles más importantes que otros en la configuración de la historia, y el problema de la explicación histórica se basa en desarrollar una metodología para modelar estructuras complejas de eventos que revele qué eventos desempeñan papeles críticos en los resultados históricos. Tal metodología es la preocupación de este artículo en el cual proponemos que la aplicación de modelos de red a casos históricos puede proporcionar respuestas a preguntas tan fundamentales como: ¿cuándo, si alguna vez, los eventos únicos cambian la historia? ¿Qué significan las cosas en el contexto histórico y cómo definimos los casos en un contexto histórico?
El argumento que proponemos es simple. El significado de un evento depende de su posición en una secuencia de eventos interrelacionados, lo que los historiadores llaman un caso. En consecuencia, para quienes estén interesados ​​en lo que significan los eventos, las secuencias de eventos de cobertura es el problema más fundamental que enfrentan los historiadores. En la Sección 2, proponemos una solución, que explota los desarrollos en el análisis de redes sociales que son relevantes para el análisis de estructuras complejas de eventos. Nos enfocamos
sobre las similitudes entre las estructuras sociales y las estructuras de eventos que apuntan a la aplicabilidad de los métodos de red para el análisis de datos históricos. Estas similitudes también sugieren que los procesos históricos pueden ser bastante robustos a la perturbación.El encapsulamiento (casing), que está limitando el comienzo y el final de las secuencias de eventos, no es diferente de un problema en el análisis estructural: cómo especificar un límite en una red. El problema para las ciencias sociales históricas implica generar una población de eventos. Las estrategias para generar una población de eventos en contextos históricos se describen brevemente en la Sección 3. En la Sección 4, ilustramos el método con respecto a un único caso complejo; revolución, contrarrevolución y revolución en una aldea china durante el período de 1920 a 1950. Explotamos técnicas de modelado para redes narrativas [1], para transformar las narrativas en redes. Las operaciones en estas redes proporcionan la base para nuestros análisis, en los que "probamos" nuestra solución de creación de un caso es simulando el futuro. Finalmente, consideramos si los eventos se pueden organizar de manera significativa con respecto a su probabilidad de dar forma al historial y describir cómo dicha matriz podría contribuir a un nuevo método histórico. En la conclusión, indicamos cómo el enfoque propuesto aquí podría alterar nuestro pensamiento sobre la naturaleza del azar en la configuración de los resultados, el registro de casos que los historiadores consideran, y la historia en general.

1. EL PROBLEMA DEL CREACIÓN DE UN CASO

El encapsulamiento está necesariamente implicado en la simple tarea de construir una narración histórica. Del mismo modo, la carcasa es un requisito previo para el significado. Precisamente porque es tan importante, la creación de un caso se ve como una cuestión de discernimiento y el juicio que surge de tal idea. Para la mayoría de los historiadores, cómo se crea un caso de estudio es un logro esencialmente artístico. Aquí proponemos una estrategia para cubrir eventos históricos que dependen menos del arte y más del método. No es sorprendente que este no sea un problema simple. Una gran complicación surge del futuro. Debido a que el significado de un evento depende de su posición en una secuencia de eventos interrelacionados, es necesariamente imposible fijar para siempre el significado de un evento, es decir, fijar para siempre el final y el comienzo de una secuencia de eventos, porque el futuro los eventos pueden activarse, es decir, dibujar en una nueva secuencia de eventos, eventos pasados. No podemos encontrar consuelo en la idea de que solo una cierta clase de eventos futuros podría tener ese papel, porque la ocurrencia futura podría ser tan trascendental como la toma de la Bastilla o tan trivial como el descubrimiento de un diario perdido. En este último caso, un elemento del arte de los historiadores, el descubrimiento (de nuevos eventos o relaciones entre eventos) tiene la capacidad de cambiar los comienzos y los fines, y por lo tanto el significado específico de los eventos.El hecho de que sea posible cambiar el significado de los eventos no significa que los historiadores deban abandonar el intento de desarrollar una estrategia para encauzar secuencias de eventos. Primero, aunque algunos eventos pueden activarse por descubrimiento o por el futuro, la mayoría nunca es tan afortunado. Lo que sea que significa que la mayoría de los eventos se han corregido completamente dentro de una única secuencia de eventos específicos, se ha fijado en secuencias de eventos más grandes y complejas. Dicho de otra manera, ni el descubrimiento de nuevos eventos ni sucesos futuros desconocidos pueden alterar en modo alguno la secuencia de eventos en los que están incrustados los eventos "muertos" y, en consecuencia, su significado también es fijo. Sin embargo, algunos eventos ya se han incorporado, y algunos más, en nuevas secuencias de eventos luego del descubrimiento o la ocurrencia de eventos en el futuro. En consecuencia, podemos imaginar una distribución de eventos, definida con respecto a su probabilidad de activación, "fluidez de significado" o susceptibilidad a estar condicionados por el futuro. Si podemos ordenar eventos con respecto a su probabilidad de estar condicionados por el futuro, se deduce que las secuencias de eventos también se caracterizan mediante dicha distribución, y asimismo, los conglomerados de secuencias de eventos densamente interrelacionadas (lo que definimos como "casos") también están sujetos a la misma distribución, con algunos más probables de cambiar que otros. Esto tiene sentido intuitivo y lo confirma el juicio que usan los historiadores. En términos simples, algunos eventos, secuencias de eventos y casos están muertos.Algunos eventos y secuencias de eventos están sujetos a una revisión radical. Podemos hablar con confianza sobre el significado de los eventos muertos. Nuestra confianza recae en aquellos que probablemente estén vivos. El problema práctico implica saber qué eventos, secuencias de eventos y casos son calientes y cuáles no.

Teoría fuerte e historia delgada

Cuanto más sólida es la teoría, más delgada es la historia, una perogrullada que se revela más claramente cuando uno se propone representar la historia como una red de eventos conectados por flujos de causalidad. Las descripciones históricas de los acontecimientos, especialmente las que ofrecen los historiadores de las ciencias sociales, tienden a tener una apariencia uniforme. Comienzan con un grupo relativamente denso de eventos interrelacionados. Estos, típicamente eventos de nivel macro (por ejemplo, crisis fiscal, crisis agraria, crisis de confianza / legitimidad) fluyen hacia una estrecha corriente de eventos específicos de micro nivel. Una vía delgada (escasamente conectada con muy poca redundancia, pocos ciclos, etc.) se mueve a través del tiempo, induciendo finalmente un evento fundamental que se caracteriza por una gran diferencia, impactando múltiples secuencias de eventos y proporcionando (típicamente) el límite del "caso".
La Figura 1 es un grafo de red de una narración histórica estándar, en este caso, la historia de la revolución y la contrarrevolución en una aldea china.



En la Figura 1, los nodos son eventos específicos que tuvieron lugar, y las flechas son enlaces entre eventos (causales o lógicos) implícitos o explícitos en la narración. El tiempo se mueve, en general, de izquierda a derecha. Los eventos pivotales son aquellos en el centro del gráfico, delimitados por el principio y el final de la narrativa, que componen el caso. La narración es muy delgada como una red, solo escasamente conectada. Esto implica que la teoría que dio lugar a la historia específica es fuerte, porque la teoría implica negar datos. Los relatos narrativos finos son el producto de teorías específicas que dirigen al historiador a identificar algunos eventos como sobresalientes y a negar otros eventos como no destacados. La historia implica la selección de eventos para interconectarse en una narrativa. Tener una teoría requiere que sepamos el final de la historia para dirigir la selección de eventos. Pero esto es un problema ¿Cómo vamos a saber el principio y el final si solo nos dicen lo que significan los eventos?


En lugar de centrarse en la selección de eventos, ahora consideramos que la teoría implícita de la historia se caracteriza por líneas finas sin vías independientes que conectan causas y eventos. Una ironía es que con una sólida teoría, pronto nos vemos obligados a contemplar los efectos de la mantequilla como historia de conducción. En la narrativa de la Figura 1, hay muchos puntos críticos a través de los cuales solo fluye un camino. Los efectos de la manteca se pronunciarían si una pequeña perturbación tiene la consecuencia de eliminar (o agregar) un nodo o línea entre los eventos. Si el evento o el enlace no existieran, ¿podríamos realmente imaginar que la revolución no ocurriría? El problema no es la parsimonia de la explicación per se. Muchas cuentas parsimoniosas que atraviesan el mismo campo desde diferentes puntos finales pueden generar poblaciones de estructuras de eventos densas. El problema es que hay muy pocos conjuntos de ojos. El truco metodológico básico es integrar puntos de vista desde múltiples perspectivas.

2. REDES SOCIALES Y CIENCIAS SOCIALES HISTÓRICAS

Durante la última década, se publicaron artículos influyentes que se basan en el análisis de redes, sobre temas históricos sustantivamente importantes, desde la organización de los Medici hasta la construcción del estado otomano y más allá de la Comuna de París [2-7]. Las imágenes y los métodos de red proporcionan información sobre mecanismos y procesos específicos al enfocarse en individuos de rango medio, sobre individuos aislados, pero por debajo de formaciones sociales enteras. Estos estudios han proporcionado una nueva percepción del papel que desempeñan las relaciones sociales en la estructuración y el bloqueo de la acción y, de manera más abstracta, han proporcionado un nuevo lenguaje para describir los niveles densos, a menudo anidados y cíclicos, interrelacionados de relaciones sociales, construcciones simbólicas, y prácticas (vistas como flujos en una red) que componen estructuras sociales tangibles en contextos históricos y contemporáneos.
Estos notables logros no han llegado sin costos. La reconstrucción detallada de la estructura social, definida con respecto al patrón en múltiples relaciones, necesaria para el análisis de red a menudo ha conducido a un mayor compromiso con explicaciones muy particulares, y una renuencia a abstraer la estructura en sí misma de contextos específicos. En consecuencia, gran parte del trabajo en ciencias sociales históricas que utiliza redes parece prosopográfico: un enfoque de datos relacionales que es limitado porque no puede proporcionar un andamiaje analítico para una comparación significativa entre casos con respecto a parámetros estructurales interpretables. Por otro lado, el énfasis en el contexto ha sido un paliativo útil para contrarrestar una tendencia más inquietante en la historia de las ciencias sociales, la idea de que los modelos de elección racional pueden servir para una función explicativa, como frente a la función heurística. Es irónico que un método (análisis de red estructural) diseñado para la comparación entre contextos celebra la particularidad como la principal barrera para una teoría que niega la relevancia de todos los contextos (a pesar de la protesta en sentido contrario). [Los modeladores de opciones racionales lo negarían al señalar cómo sus modelos incorporan el contexto (como valores, bienes, costos, etc.) en los marcos de decisión de los actores. Pero el hecho de que todos los contextos son igualmente fáciles de integrar en el modelo le quita el fantasma.]


Igualmente irónico es el extraño matrimonio entre teóricos relacionales y de contingencia. Al igual que con las redes, la contingencia ha sido un "descubrimiento" importante para los científicos sociales históricos y actualmente sirve como el principal desafío para los modelos más antiguos en las ciencias sociales históricas que se centran en los determinantes a nivel macro del cambio social sin suficiente atención (social, relacional, mecanismos simbólicos, etc.) Las principales metáforas se basan en el hecho de que las observaciones de redes sociales, como las observaciones históricas, están ligadas e interdependientes. En las redes sociales y en la historia, existe la sensación de que el hecho de la interdependencia significa que el cambio sutil puede concatenarse violentamente a través de un sistema y acumularse en cambios históricos y / o estructurales imprevistos [8]. La idea es atractiva, pero incorrecta.

Las estructuras sociales tangibles se basan y dependen de la fluidez local y la interrupción de la estabilidad [9,10]. (Solo podemos observar estructuras sociales que son robustas. Las estructuras sociales no sólidas no duran lo suficiente para observar. Un idioma popular explica lo que fortalece las estructuras. El amor, como un árbol, puede resistir mejor las tormentas si se dobla).
Las estructuras robustas absorben la fluidez en el micronivel en virtud de características estructurales específicas que "explotan" la interdependencia. Los datos de red en una población son localmente densos, pero globalmente escasos, a menudo cíclicos, anudados y caracterizados por una redundancia de vínculos. (Hay muchas más similitudes. Una similitud, que explotamos posteriormente, es que las características de las redes sociales globales pueden determinarse de manera significativa mediante el muestreo de redes locales, un argumento que a menudo está implícito en las narrativas históricas). Las estructuras sociales comparten estas características con estructuras. Además de los revisionistas radicales, la mayoría de los historiadores también estarían de acuerdo en que los datos históricos muestran una redundancia vinculada, por ejemplo, la idea de que existen múltiples vías independientes a través de las cuales fluyen los efectos causales. Los ciclos en los datos históricos aparecen cuando eventos futuros condicionan eventos pasados, sacando de las relaciones nuevas pasadas a otros eventos. En las redes sociales, la densidad local, el nudo, la redundancia y la ciclicidad dan lugar a las complejas estructuras sociales que organizan el mundo relacional.
Aunque analíticamente separables, se relacionan entre sí. La ciclicidad da lugar a la redundancia, la redundancia da lugar a la densidad local y la densidad da lugar a nudos, generando propiedades de cohesión a nivel macro a partir de una serie de microprocesos independientes. Nuestro interés aquí es mostrar que es lo mismo con las estructuras de eventos. Demostramos que las estructuras de eventos reales que surgen de los datos históricos tienen una estructura similar, donde el orden aparece en el nivel agregado, un producto de la fluidez a nivel micro. En consecuencia, las representaciones de estructuras de eventos como narraciones delgadas y, en consecuencia, sujetas a los "efectos de la mantequilla" se equivocan en gran medida.


3. GENERAR UNA POBLACIÓN DE EVENTOS DE NARRATIVAS INTERCALANTES

En los relatos históricos convencionales, el fin determina el comienzo y, por lo tanto, los elementos que deben ordenarse en la narración. Para el caso de un evento, que puede estar en múltiples subsecuencias interrelacionadas, necesitamos una población de eventos alrededor de la cual podamos dibujar un principio y un final. Dos estrategias distintas para construir una población de eventos son posibles, muestras de bola de nieve de corto alcance y narrativas intercalares. La idea del muestreo de bolas de nieve de corto recorrido es comenzar con una gran muestra de eventos y utilizar técnicas de muestreo de bola de nieve para generar una población de eventos. Se puede implementar una variedad de estrategias de muestreo para redes [ver 11,12 para primeros pasos], para construir poblaciones de eventos históricos. Aquí, ilustramos la segunda estrategia, narraciones intercalares, para demostrar nuestro método para la creación de un caso. Los datos que usamos son historias de vida. Al igual que los relatos históricos, las historias de vida presuponen un final (un punto de vista). Contar historias implica organizar elementos seleccionados de un rico e inagotable plato de bienes culturales -personas, lugares, cosas, eventos, ideas, etc.- en secuencias narrativas que están orientadas hacia un fin particular, de tal manera que sea una trama . El final le permite al autor seleccionar de un mar interminable de eventos solo aquellos eventos que él o ella ve como importantes (sobre la base de una teoría) para que la historia sea revelada. En contraste con las historias formales, las historias de vida tienen características que las hacen ideales para nuestro objetivo, la más importante de las cuales es una estructura teórica débil.
Para ilustrar utilizamos 14 historias de vida de pobladores chinos cuyas experiencias abarcaron la revuelta agraria en el campo, la contrarrevolución, una revolución y luego la codificación de un régimen revolucionario en un marco institucional. El contexto es un pequeño pueblo en el norte de China. Las historias están tomadas de Report from a Chinese Village [13]. El libro contiene una colección de historias de vida de los aldeanos de la aldea de Liu Ling, en el norte de China, cerca de Yenan. Myrdal realizó entrevistas allí en 1961. La Figura 2 proporciona una representación gráfica de dos de las historias de vida que usamos.
Al tratar los eventos como nodos y las relaciones entre los eventos como arcos, las secuencias narrativas de los elementos se transforman en redes. Al representar las secuencias de eventos complejos como redes, podemos observar y medir las características estructurales de las narraciones que de otra manera serían difíciles de ver.
En estos gráficos, los elementos de la historia de la vida narrativa se tratan como nodos que están conectados por cláusulas narrativas, representadas por arcos. Una cláusula narrativa es una cláusula que está ordenada temporalmente de tal forma que moverla implica cambiar el significado de la subsecuencia en la que está incrustada. Las cláusulas libres, por el contrario, se pueden mover sin cambiar el significado de una subsecuencia o la narración como un todo [1,14,15]. Codificamos solo cláusulas narrativas como arcos, vinculando un evento (o elemento) a otro a lo largo del tiempo. Los elementos (nodos) de las narrativas son heterogéneos en alcance y rango, desde el saludo a las tropas conquistadoras con té, hasta una batalla escenificada entre el KMT y los comunistas. El evento anterior ató a los hijos de los terratenientes al KMT; este último resultó en una derrota imaginaria de los comunistas. La idea detrás de este espejismo era engañar al liderazgo del KMT para que pensara que los comunistas habían sido aplastados por las fuerzas locales del KMT para que ambas fuerzas pudieran resistir a los japoneses.



En la Figura 2, el tiempo narrativo se mueve de la parte superior a la parte inferior de la página. El eje izquierda-derecha no es substancialmente interpretable. La profundidad narrativa está representada por la cantidad de arcos que conectan eventos. En esta instancia, por ejemplo, los dos eventos en la parte inferior de la Figura 2B tienen una profundidad narrativa de 17, es decir, hay 17 pasos desde la parte inferior hasta un evento inicial en la parte superior del gráfico. Una característica de estas historias es que son estructuralmente muy diferentes de las historias de los historiadores profesionales.
Tienen muchos elementos desconectados. Los eventos se mencionan, pero no necesariamente están vinculados. A través de subsecuencias, es imposible caminar desde los eventos tempranos a eventos posteriores sin interrupción. No es sorprendente que las historias de vida sean más densas y más complejas que las narrativas históricas convencionales. Tienden a tener un flujo narrativo profundo. Son más complejos porque la gente común no está entrenada como teórica. Por lo tanto, tienen problemas para negar los datos. Las historias de vida con las que trabajamos muestran heterogeneidad. Algunas cuentas son delgadas (Figura 2A), mientras que otras son intrincadas (Figura 2B). Cada una de estas historias tiene un punto final diferente. Los narradores están parados en diferentes lugares. El final de las historias implica diferentes resultados.
El hecho de que se encuentren en diferentes lugares dirige la selección de los elementos que eligen representar para su fin. Por analogía, uno podría considerar un conjunto de cuentas profesionales de la misma secuencia de eventos, cada uno de pie en una posición diferente. Todas las historias cubren los mismos eventos de aldea y aldea en el mismo tiempo, y, en consecuencia, el campo que atraviesan y los eventos a los que se refieren, se superponen considerablemente. Explotamos esta superposición intercalando historias para generar una población de eventos interrelacionados, lo que proporciona una nueva estructura de datos y, en consecuencia, señala nuevas estrategias para el análisis. Estas nuevas instrucciones se recogen a continuación en la Sección 4.


4. HACER Y PROBAR UN CASO

Entre 1920 y 1950, China se transformó. La reforma, la revolución y la guerra sacudieron el campo. Nuestros datos surgen de una de las miles de aldeas en el norte de China. Son sobre los eventos en este pueblo y su conexión con eventos lejanos que ocurren en otros pueblos y ciudades y países, cuyo carácter y contexto probablemente era inimaginable para los aldeanos que vivían en Liu Ling. Nuestro problema es desarrollar un método para el caso de secuencias de eventos interrelacionados. Para presentar un caso, primero necesitamos una población de eventos y necesitamos información sobre su relación. El segundo paso es dibujar un límite en los nodos en el gráfico. El problema (y la solución) se conoce como el problema de especificación de límites [16]. Basándonos en una vieja tradición en la literatura de las redes sociales, podemos aislar los casos al definir una partición en la población de eventos.Sin embargo, las técnicas de agrupamiento estándar no son apropiadas para nuestro problema, ya que los arcos que conectan regiones densas de un gráfico (nodos puente) podrían desempeñar un papel importante en la secuencia narrativa que estamos tratando de capturar. En cambio, adoptamos una nueva estrategia, que es identificar todos los bicomponentes en la población [17]. Un componente de un gráfico es un subgrafo conectado máximo. Un subgráfo máximo es uno que no puede hacerse más grande y aún conserva la propiedad de que hay una ruta entre todos los pares de nodos en el subgráfico y que no hay una ruta entre un nodo en el componente y un nodo que no está en el componente. Un bicomponente es un componente que tiene la propiedad de que todos los nodos están conectados por al menos dos caminos independientes diferentes y que la adición de un nodo requiere que esté conectado a dos nodos en el subgráfico. La idea central es que un caso, visto como un conjunto de eventos interconectados producidos por múltiples narraciones intercaladas debe tener la propiedad de al menos un bicomponente. Un bicomponente no es necesariamente un caso. Es un candidato para un caso. Definimos los casos como bicomponentes que son robustos para el descubrimiento o la activación futura. La figura 3 informa todos los eventos mencionados en las 14 historias de los aldeanos chinos con los que trabajamos, intercalados para formar un solo gráfico. Se mencionan casi 2000 eventos únicos, cada evento está representado por un círculo. Los eventos que están en más de una narrativa están sombreados. El tiempo narrativo se mueve desde la parte superior a la parte inferior de la página. En algunas regiones del gráfico, donde los eventos y sus relaciones son especialmente densos, los arcos son invisibles. Los eventos que están vinculados entre sí por arcos en estas regiones densas parecen superponerse en el gráfico. Los eventos al lado izquierdo de la figura están incrustados en secuencias de eventos que no están vinculadas a eventos en el lado derecho de la figura.



Esta es nuestra población de eventos. Por supuesto, hay millones de eventos no presentes. Podrían pertenecer a alguna otra historia pero no a esta historia. Pero algunos de los eventos que están presentes parecen que tampoco pertenecen a esta historia; por ejemplo, ninguna ruta los conecta a otros eventos.
Los happenings sin relaciones son solo acontecimientos. Las relaciones que tienen con otros eventos que no están en nuestra población pueden hacerlos parte de la historia, pero no la historia del caso en el que estamos trabajando. La figura 4 identifica y representa el componente principal. Tenga en cuenta que hemos pasado de los eventos de 1995, muchos de los cuales no estaban relacionados con ningún otro evento, a un conjunto más pequeño de aproximadamente 1476 eventos, todos agrupados en el lado derecho de la Figura 4.




Como antes, el tiempo narrativo se mueve desde la parte superior a la parte inferior de la página, los eventos superpuestos están conectados por arcos invisibles, y los eventos compartidos a través de múltiples narrativas están sombreados. Uno podría considerar un componente como un caso. El problema sustantivo es que es demasiado frágil. La eliminación de cualquier número de arcos o nodos individuales (relaciones causales o eventos) daría como resultado una partición del componente en múltiples subgrafos discretos. Nuestra estrategia es definir un caso candidato como un componente bicomponente, insistiendo en que todos los eventos estén conectados por al menos dos vías independientes y para probar su robustez para el futuro. El bicomponente más grande contiene 493 eventos. La figura 5 representa la estructura de este bicomponente, siguiendo la plantilla utilizada en las figuras anteriores. La Figura 5 destaca eventos compartidos en múltiples narrativas.
Este es el caso candidato.



5. CASOS DE PRUEBA

Para saber qué significa un evento, uno debe incrustarlo en una secuencia de eventos interrelacionados, que a su vez están integrados en secuencias más grandes que componen un caso. Algunos casos son más sólidos que otros. Los casos robustos se componen de elementos que, incluso si se activan en el futuro (o por descubrimiento) no cambian el caso. Es posible evaluar la robustez del caso simulando el efecto del futuro. Los subproductos son una evaluación de la solidez de los casos y un inventario de los eventos ordenados con respecto a la probabilidad de que sean causables. La Figura 6 informa la solidez de nuestro caso candidato, su resistencia a las perturbaciones menores y mayores. El criterio que usamos es la estadística RAND, que informa la extensión del acuerdo de clasificación cuando un par de elementos seleccionados al azar (aquí, eventos) se clasifican de la misma manera (perteneciendo al mismo grupo o perteneciendo a diferentes grupos) a través de dos particiones de una matriz. La estadística ajustada corrige la superposición casual [18, Eq. 9] e informa el acuerdo entre dos subgrafos más allá de la expectativa de azar.
El lado izquierdo de la Figura 6 informa el grado de acuerdo entre los eventos iniciales que componen el bicomponente inicial (n=479) y los eventos que componen un segundo bicomponente potencialmente alterado por la adición aleatoria de 1 a 10 nuevos enlaces a uno o más de los eventos de 1995 que componen el universo de eventos de Liu Ling. En otras palabras, agregamos un número de líneas aleatorias para conectar eventos previamente desconectados en Liu Ling. Agregar enlaces cambia la estructura del grafo original (al igual que el descubrimiento de un nuevo "hecho" podría conectar dos eventos que anteriormente se consideraban desconectados). Luego, reducimos el nuevo gráfico a su bicomponente más grande y comparamos el bicomponente del gráfico original con el nuevo bicomponente. Para cada caso, ejecutamos la misma simulación 500 veces, evaluando el efecto de agregar 1, 2, 3, ... 10 enlaces. La línea horizontal oscura informa el efecto mediano; el sombreado sombreado informa el rango intercuartílico. Al alejarse de las áreas sombreadas hay puntos que informan los efectos extremos de agregar enlaces.
Debería ser obvio que el caso es robusto al impacto de agregar un enlace. En la instancia promedio, no hay cambio. En el peor de los casos, agregar una sola línea resulta en un acuerdo entre los dos casos candidatos, que es un 93% mayor de lo esperado por casualidad. Los efectos de la mantequilla son posibles, pero extremadamente raros. Se observa un patrón similar para la adición de dos o tres relaciones nuevas. La estructura se rompe un poco con alteraciones más y más radicales del gráfico original. En el momento en que se agregan 10 nuevas líneas, la superposición entre los dos casos candidatos cae un 90% más de lo esperado por casualidad. El alcance del cambio es significativo, al igual que el descubrimiento de un nuevo archivo, múltiples adiciones conducirían a (re) conectar elementos de la estructura de datos subyacente, por lo tanto,

El alcance del cambio es significativo, al igual que el descubrimiento de un nuevo archivo, las adiciones múltiples conducirían a (re) conectar elementos de la estructura de datos subyacente, lo que podría cambiar su significado cambiando el caso en el que están integrados. La alteración simultánea de múltiples relaciones causales puede tener un profundo efecto multiplicador. La inestabilidad del caso resulta de combinaciones específicas (conjunciones) de cambios múltiples y simultáneos en los datos subyacentes.El efecto de eliminar relaciones es mucho menos pronunciado. Incluso en casos extremos, eliminando 10 enlaces, y por lo tanto potencialmente hasta 20 nodos, los dos casos candidatos siguen siendo notablemente similares. Aquí, el contraste entre nuestro caso y las narrativas históricas tradicionales (o incluso el componente que identificamos anteriormente) está marcado. Estos hallazgos no son artefactos, y proporcionan una idea de la estructura de un caso. Si se eliminase una ventaja de un bicomponente mínimamente conectado, el resultado sería una partición del componente en subgrafos y, por lo tanto, un acuerdo de clasificación significativamente inferior al que observamos. La solidez del caso para la eliminación implica que el bicomponente está compuesto de múltiples clústeres densos y que los eventos que componen cada grupo están vinculados por más de dos vías independientes. Esta estructura está más cerca de la estructura social escrita en grande. La densidad local de las estructuras de eventos reales protege los casos de colapso de las perturbaciones que tienen el efecto de eliminar las relaciones causales entre los eventos históricos.

Rompedores de casos

Para los casos que colapsan bajo una presión sutil (al agregar o eliminar una o unas pocas líneas), uno podría tener poca confianza en los significados atribuidos a un evento. Con casos robustos para el futuro, el significado de los eventos que componen el caso es fijo. Se sigue que si otros siguieran la misma estrategia de investigación, revelarían el mismo caso. En consecuencia, estarían de acuerdo con el significado del evento. Como útil es un inventario de eventos dispuestos con respecto a su probabilidad de romper el caso. Esta matriz permitiría que los científicos sociales históricos aprendan acerca de las características estructurales de los eventos que tienen el potencial de tocar los efectos de ruptura de casos. De las colas en ambos paneles de la Figura 6, está claro que en algunos casos, agregar o quitar un borde puede romper la caja. Estos son eventos fundamentales. Los eventos pivotales pueden inducirse de maneras que ya no están implícitas en la cohesión proximal de los grupos de eventos iniciales.



Un mecanismo (diferenciación) es que un clúster de evento temprano conecta múltiples clústeres de sucesos posteriores, en cada caso a través de múltiples rutas independientes. Un segundo mecanismo (convergencia) es que los clústeres de eventos iniciales separados se conectan a los mismos conglomerados de eventos subsiguientes, en cada caso a través de múltiples rutas independientes. Varias combinaciones de diferenciación también pueden ser visibles. En el primer caso (diferenciación), lo que parece un clúster de eventos unitarios se divide en múltiples clusters de eventos. En el segundo caso (convergencia) observamos el tipo inverso de estructura.
Una estrategia simple para identificar bordes / nodos de alto impacto es recorrer cada borde (o par de nodos) de a uno por vez, eliminarlo o agregarlo, y calcular una estadística RAND ajustada para los bicomponentes resultantes. Esto genera un puntaje de impacto potencial sistemático para cada borde, bajo la suposición de que podría ser eliminado (o agregado entre nodos) por algún evento futuro. En los límites de nuestro caso se encuentran grupos de eventos más pequeños y relativamente densos. Si los eventos que se encuentran en el límite de los casos son o no fundamentales depende de la estructura de los grupos de eventos más pequeños que, como las lunas, están suspendidos en la periferia del caso focal. En este caso, los eventos pivotales se ubican exclusivamente dentro de las regiones semi-densas del bicomponente.

6. DISCUSIÓN

Este artículo explota los métodos de red para hacer historia. Al centrarse en las redes como útiles para el método de la ciencia social histórica, han aparecido nuevas soluciones a viejos problemas. El problema más profundo es qué significan los eventos. La idea central de este artículo es que el significado de los eventos depende de su posición en una secuencia de eventos y, por lo tanto, el problema central de las ciencias sociales históricas son las secuencias de sucesos de cobertura, con el fin de inducir principios y fines. Las soluciones antiguas para la circunscripción de un caso están por todas partes. Descansan en conocer el final, teniendo una teoría para guiar la selección de eventos hacia un comienzo. La estructura de la historia aparece como un reloj de arena. Toda la energía causal tangible está encerrada en corrientes de comportamiento delgadas que parecen estar sujetas a todo tipo de contingencia. Se necesita poca visión para ver que, al igual que las muñecas rusas anidadas, el interior de una historia proporciona la madeja exterior para otra. En cada eliminación, lo que parece globalmente escaso se revela como denso a nivel local, y viceversa. 

Los métodos de red proporcionan una forma de explotar esta característica fractal de las estructuras de eventos, si podemos revelarlas. Ilustramos una estrategia simple para generar y revelar estructuras de eventos densos, como una nueva unidad de análisis. La estrategia que ilustramos es para intercalar historias múltiples. Las estructuras de eventos históricos que produce nuestro método se caracterizan por su ciclicidad, redundancia y densidad local.

Debido a que son estructuras, tienen parámetros significativos. Se ajustan a nuestra comprensión intuitiva de un caso, como algo que envuelve eventos dentro de un límite, ya sea en virtud de principios estructurales similares que organizan las relaciones entre los elementos, o una estructuración profunda a través de la memoria o la codificación cultural. También se ajustan a nuestra comprensión intuitiva de cómo se desarrolla la historia como resultado de múltiples fuentes que operan a través de múltiples vías en múltiples niveles de observación.
Si la historia tiene esta estructura, se deduce que la contingencia, mientras sea posible, está limitada por estructuras de eventos fractales profundamente complejas que absorben los eventos del presente y del futuro. Difícilmente podría ser de otra manera. ¿Cómo puede ser entonces que la contingencia y el azar desempeñen papeles tan grandes en la comprensión histórica? Una respuesta conservadora se sugiere arriba. Algunos eventos rompen casos. Debido a que este es el caso, una contribución central de la metodología que proponemos es producir una serie consistente de eventos con respecto a su probabilidad de servir como casos quebrantadores. Tal arreglo ayudará, como mínimo, a los historiadores a demostrar empíricamente qué eventos son críticos para su caso. A largo plazo, una mejor comprensión de los casos que interrumpen los casos, dentro de los casos, debería proporcionar una base para la abstracción en todos los casos, el objetivo principal de la sociología histórica.
Hay más posibilidades radicales. Uno podría, por supuesto, con algo de ironía, simplemente afirmar que el énfasis en el azar y la contingencia es el resultado de las presiones disciplinarias. Hay algo de verdad en esta afirmación, aunque tal vez no en el aspecto que uno pueda tener. La verdad radica en el compromiso que la (s) disciplina (s) tiene con los casos antiguos. Si el nuevo trabajo debe permanecer dentro de los límites de los casos aceptados, los nuevos argumentos más convenientes gravitarán hacia la contingencia como explicación. Sin embargo, podría ser de otra manera. Si el juicio ha producido los casos reales a considerar, el método propuesto en este artículo inducirá esos casos, y solo esos casos.
Al mismo tiempo, el método que describimos permite la inducción de casos: estructuras de eventos densas y robustas a una leve permutación, para las cuales no tenemos palabras. Y aquí, quizás, yace la avenida para una nueva percepción del pasado. Nuestra conjetura es que el compromiso de los historiadores con la estructura de casos conocidos ha limitado significativamente nuestra comprensión de los eventos, secuencias de eventos y la naturaleza del pasado, de la misma manera que el compromiso de los sociólogos con la realidad de las descripciones categóricas de la presente comprensión limitada de las estructuras sociales dentro de las cuales se organiza, expresa y representa el material de la vida. Para estar seguros, por supuesto, uno tiene que esperar las aplicaciones posteriores de los métodos de red -más sofisticados que los utilizados aquí- a la historia. 



REFERENCIAS

1. Bearman, P.; Stovel, K. Becoming a Nazi: A model for narrative networks. Poetics, Forthcoming, 1999.
2. Barkey, K.; Van Rossen, R. Networks of contention: Villages and regional structure in the seventeenth century Ottoman empire. Am J Sociol 1997, 102(5), 1345–1382.
3. Bearman, P. Relations into Rhetorics; Rose Monograph Series; ASA: New Brunswick, NJ, 1993.
4. Brudner, L.; White, D. Class, property and structural endogamy: Visualizing networked histories. Theory and Society 1997, 25, 161–208.
5. Gould, R.V. Insurgent Identities: Class, Community, and Protest in Paris from 1848 to the Commune; University of Chicago Press: Chicago, IL, 1995.
6. Gould, R.V. Patron-client ties, state centralization, and the whiskey rebellion. Am J Sociol 1996, 102(5), 400 – 429.
7. Padgett, J.; Ansell, C. Robust action and the rise of the Medici, 1400 –1434. Am J Sociol 1993, 98, 1259 –1319.
8. Emirbayer, M.; Goodwin, J. Network analysis, culture, and the problem of agency. Am J Sociol 1994, 99, 1411–1454.
9. Tilly, C. Durable Inequality; University of California Press: Berkeley, 1999.
10. White, H. Identity and Control; Princeton University Press: Princeton, NJ, 1992.
11. Frank, O. Sampling and estimation in large social networks. Social Networks 1978, 1, 91–101.
12. Granovetter, M. Network sampling: Some first steps. Am J Sociol 1977, 81(6), 1287–1303.
13. Myrdal, J. Report From a Chinese Village; Pantheon Books: New York, NY, 1965.
14. Labov, W. Language in the Inner City; University of Pennsylvania Press: Philadelphia, 1972.
15. Franzosi, R. From Words to Numbers. Unpublished Manuscript. Oxford University, England, 1999.
16. Wasserman, S.; Faust, K. Social Network Analysis. Methods and Applications; Cambridge University Press: Cambridge, MA, 1994.
17. White, D.; Schnegg, M.; Brudner, L.; Nutini, H. Status Groups and Structural Endogamy: Compadrazgo in Rural Tlaxcala, Mexico. Unpublished manuscript, 1999.
18. Morey, R.; Agresti, A. The measurement of classification agreement:An adjustment to the RAND statistic for chance agreement. Educational Psychological Measurement 1984, 44, 33–37.