Mostrando entradas con la etiqueta redes neuronales. Mostrar todas las entradas
Mostrando entradas con la etiqueta redes neuronales. Mostrar todas las entradas

miércoles, 2 de enero de 2019

Los efectos positivos y negativos de la presión de grupo

La razón extraordinaria por que las personas excepcionales evitan a los amigos mediocres (recompensan a tu cerebro)

Tu multitud literalmente te hace ver el mundo de manera diferente.


Por Mithu Storoni, autor de 'Stress-Proof'
@StoroniMithu
INC 




CREDITO: Getty Images

Les dicen a los empresarios que son solitarios, y que los visionarios lo hacen solos. Para tener éxito, has escuchado que debes dejar a los detractores y rodearte de otros que piensan como tú. ¿Hay realmente alguna verdad a esto? ¿Cuál es la ciencia detrás de por qué la multitud correcta puede impulsarnos hacia adelante, mientras que la multitud equivocada nos frena?

Una línea recta puede encogerse o crecer.

Cuando Solomon Asch, un psicólogo de Swarthmore College en la década de 1950, le pidió a un grupo de voluntarios que estimaran la longitud de una línea negra vertical en una tarjeta blanca llana, hizo una observación intrigante. Encontró que la estimación de cada persona variaba dependiendo de lo que todos los demás pensaban. Una persona rodeada de personas que sobreestimaron su longitud también la sobreestimó. Lo mismo era cierto para la subestimación. La gente literalmente veía la línea de manera diferente dependiendo de quién estaba a su alrededor.

¿Cómo puede una línea negra verse diferente dependiendo de las opiniones de otros? Asch estaba simplemente confirmando lo que Gustave Le Bon había escrito hace más de medio siglo, en su tratado seminal The Crowd: A Study of the Popular Mind, un estudio que se dice fue leído por Lenin, Mussolini y Hitler. Le Bon escribió que en una multitud "los sentimientos e ideas de todas las personas toman una misma dirección y su personalidad consciente desaparece".

¿Qué está pasando en tu cerebro?

Cuando tienes una opinión, una idea o un deseo que coincide con los de las personas que te rodean, el camino de la recompensa de tu cerebro se hace cosquillas y te sientes bien.

Si, por otro lado, su opinión, idea o deseo es diferente de los de las personas que lo rodean, una parte de su cerebro que se dispara cuando siente dolor (la ínsula anterior) se activa. Cuando esto sucede, haces una de dos cosas:
  1. Opción A: pretendes estar de acuerdo con los demás, pero continúas guardando tus propios pensamientos en secreto.
  2. Opción B: tu cerebro cambia activamente tu forma de pensar y moldea tus pensamientos más íntimos para alinearlos con los de tu público.

Un artículo reciente sugiere que puede estar usando la opción B más a menudo de lo que cree.

Una red dentro de su cerebro (que involucra la corteza frontal medial y la ínsula anterior) controla los "errores" en la forma en que se conforma con las personas que lo rodean. Se vuelve activo tan pronto como usted y su grupo no están de acuerdo en algo y anuncian los esfuerzos de su cerebro para tratar de reducir esta brecha de desacuerdo.

Un estudio ha demostrado cómo esta red se activa antes de que las personas cambien sus creencias más íntimas para que coincidan con las creencias que aparentemente sostienen.

Lo que esto significa para ti

Incluso si tienes una brillante y racha innovadora dentro de ti, corres el riesgo de abandonar tus ideas empresariales, cambiar tus creencias y rendirte al pesimismo de los detractores si estás rodeado de ellos.

En cambio, si se rodea de empresarios optimistas y enérgicos que aspiran a tener éxito, es probable que cambie sus pensamientos más íntimos para pensar como ellos y se vuelva más emprendedor, incluso si nunca antes ha tenido ideas empresariales.

Si tu multitud puede cambiar tus pensamientos más íntimos, puede cambiar quién eres. Cuando escoges a las personas con las que quieres estar, eliges a la persona que quieres que sea, elige sabiamente.

jueves, 6 de diciembre de 2018

Cómo se ve la red de aprendizaje de un proceso de machine learning


¿Qué ven las máquinas a medida que aprenden nuevas habilidades?

Por Matt Burgess | Wired

Graphcore, con sede en Bristol, utilizó su nuevo procesador y software de IA para mostrar lo que sucede dentro de los procesos de aprendizaje automático.

El aprendizaje automático está rompiendo las barreras del idioma, alimentando y combatiendo el ciberdelito, e incluso puede reconocer las emociones, pero los procesos complejos detrás de estos avances son a menudo un misterio.

El emprendimiento Graphcore quiere cambiar esto. La firma con sede en Bristol ha creado una serie de 'exploraciones cerebrales de IA', utilizando su chip y software de desarrollo, para producir imágenes de plato de Petri que revelan lo que sucede cuando se ejecutan los procesos.

La mayoría de los programas de aprendizaje automático, incluidos los sistemas propios de Google y los marcos de código abierto, funcionan mediante la capacitación de AI en gráficos computacionales.

En pocas palabras, los sistemas de aprendizaje automático pasan por una fase de construcción, durante la cual se crea un gráfico que muestra todos los cálculos necesarios. A esto le sigue una fase de ejecución en la que la máquina utiliza los cálculos (o pasos) resaltados en el gráfico para ejecutar sus procesos de capacitación. A medida que avanza a través de sus ejecuciones, hace "pases" que se ejecutan hacia adelante y hacia atrás a través de los datos. En las imágenes de Graphcore, al movimiento de estos pases y las conexiones entre ellos se les han asignado varios colores.

Esto es similar a cómo se compilan las exploraciones cerebrales, según Nigel Toon, CEO de Graphcore.

"La sorprendente similitud con las exploraciones del cerebro resalta que lo que tu cerebro está haciendo es algo muy similar", dijo Toon a WIRED. "Tu cerebro tiene neuronas y sinapsis que conectan esas neuronas, y también estás modelando efectivamente algo muy similar en este mundo de aprendizaje automático.

"Lo que estás viendo es cómo funciona la gráfica en el procesador, por lo que sería análogo a tomar una exploración de un cerebro para ver cómo funciona".

Las imágenes, proporcionadas exclusivamente a WIRED, muestran de lo que es capaz el software Poplar de la empresa cuando se combina con un procesador diseñado para aplicaciones de IA. Graphcore generó las imágenes mientras ejecutaba los procesos de aprendizaje automático utilizados para identificar las imágenes. "Estás llevando efectivamente una descripción gráfica a través de una pieza de software a un procesador gráfico", dijo Toon a WIRED.

"Lo que estás viendo son las capas de una profunda red neuronal expuesta", explicó. "Lo que está haciendo una red neuronal profunda es tratar de extraer características de los datos de forma automática, por lo que proporciona un flujo de datos y están extrayendo niveles de detalle más y más finos".

Graphcore dice que el chip utilizado para crear las imágenes se completará este año y ha desarrollado una Unidad de Procesamiento Inteligente (UIP), que argumenta que es la mejor manera de ejecutar la IA de aprendizaje automático. Explica el proceso tecnológico en una publicación de blog publicada junto con este artículo.

En comparación, las empresas como NVIDIA ejecutan programas de aprendizaje automático existentes en GPU de alta potencia. NVIDIA explica que sus GPU se están desarrollando para ejecutarse en la nube y admiten más procesamiento de datos con menos infraestructura, pero Toon argumenta que los procesadores específicos para el aprendizaje automático son mejores que los GPU.

Es algo, aparentemente, Google está de acuerdo con. Cuando el gigante de la tecnología lanzó recientemente su AI para Google Translate, se vio obligado a crear un nuevo chip: una unidad de procesamiento de tensor. El procesador está estructurado de manera diferente a las GPU y computa menos.

"Se están esforzando bastante para evolucionar a las GPU en una dirección diferente", dijo Toon. "Creemos que al comenzar a formar una hoja de papel limpia, podemos hacer algunos avances importantes y mover el paisaje"....

lunes, 5 de marzo de 2018

Mapeando la red cerebral para construir mejor inteligencia artificial

Mapeo del cerebro para construir mejores máquinas

Una carrera para descifrar los algoritmos del cerebro podría revolucionar el aprendizaje automático.

Emily Singer || Quanta Magazine



Greg Dunn

Lleve a un niño de tres años al zoológico e intuitivamente sabe que la criatura de cuello largo que mordisquea las hojas es lo mismo que la jirafa en su libro ilustrado. Esa hazaña superficialmente fácil es en realidad bastante sofisticada. El dibujo animado es una silueta congelada de líneas simples, mientras que el animal viviente está inundado de color, textura, movimiento y luz. Puede contorsionarse en diferentes formas y se ve diferente desde todos los ángulos.





Los humanos sobresalen en este tipo de tarea. Podemos comprender sin esfuerzo las características más importantes de un objeto a partir de unos pocos ejemplos y aplicar esas características a lo desconocido. Las computadoras, por otro lado, típicamente necesitan ordenar a través de una base de datos completa de jirafas, que se muestran en muchos entornos y desde diferentes perspectivas, para aprender a reconocer con precisión al animal.

La identificación visual es una de las muchas áreas donde los humanos vencieron a las computadoras. También somos mejores para encontrar información relevante en una avalancha de datos; para resolver problemas no estructurados; y al aprender sin supervisión, cuando un bebé aprende sobre la gravedad cuando juega con bloques. "Los humanos son mucho, mucho mejores generalistas", dijo Tai Sing Lee, científico informático y neurocientífico de la Universidad Carnegie Mellon en Pittsburgh. "Todavía somos más flexibles en el pensamiento y podemos anticipar, imaginar y crear eventos futuros".

Un ambicioso programa nuevo, financiado por el brazo de inteligencia del gobierno federal, tiene como objetivo lograr que la inteligencia artificial esté más en línea con nuestros propios poderes mentales. Tres equipos compuestos por neurocientíficos e informáticos intentarán descubrir cómo el cerebro realiza estas hazañas de identificación visual, y luego fabrican máquinas que hacen lo mismo. "El aprendizaje automático de hoy falla donde los humanos se destacan", dijo Jacob Vogelstein, quien dirige el programa en la Actividad de Proyectos de Investigación Avanzados de Inteligencia (IARPA). "Queremos revolucionar el aprendizaje automático mediante la ingeniería inversa de los algoritmos y cálculos del cerebro".

El tiempo es corto. Cada equipo ahora está modelando un trozo de corteza con detalles sin precedentes. En conjunto, los equipos están desarrollando algoritmos basados ​​en parte en lo que aprenden. Para el próximo verano, a cada uno de esos algoritmos se le dará un ejemplo de un elemento extraño y luego se le pedirá que seleccione instancias del mismo de entre miles de imágenes en una base de datos sin etiqueta. "Es un marco de tiempo muy agresivo", dijo Christof Koch, presidente y director científico del Instituto Allen para Ciencias del Cerebro en Seattle, que está trabajando con uno de los equipos.

Los humanos sobresalen en este tipo de tarea. Podemos comprender sin esfuerzo las características más importantes de un objeto a partir de unos pocos ejemplos y aplicar esas características a lo desconocido. Las computadoras, por otro lado, típicamente necesitan ordenar a través de una base de datos completa de jirafas, que se muestran en muchos entornos y desde diferentes perspectivas, para aprender a reconocer con precisión al animal.

La identificación visual es una de las muchas áreas donde los humanos vencieron a las computadoras. También somos mejores para encontrar información relevante en una avalancha de datos; para resolver problemas no estructurados; y al aprender sin supervisión, cuando un bebé aprende sobre la gravedad cuando juega con bloques. "Los humanos son mucho, mucho mejores generalistas", dijo Tai Sing Lee, científico informático y neurocientífico de la Universidad Carnegie Mellon en Pittsburgh. "Todavía somos más flexibles en el pensamiento y podemos anticipar, imaginar y crear eventos futuros".

Un ambicioso programa nuevo, financiado por el brazo de inteligencia del gobierno federal, tiene como objetivo lograr que la inteligencia artificial esté más en línea con nuestros propios poderes mentales. Tres equipos compuestos por neurocientíficos e informáticos intentarán descubrir cómo el cerebro realiza estas hazañas de identificación visual, y luego fabrican máquinas que hacen lo mismo. "El aprendizaje automático de hoy falla donde los humanos se destacan", dijo Jacob Vogelstein, quien dirige el programa en la Actividad de Proyectos de Investigación Avanzados de Inteligencia (IARPA). "Queremos revolucionar el aprendizaje automático mediante la ingeniería inversa de los algoritmos y cálculos del cerebro".

El tiempo es corto. Cada equipo ahora está modelando un trozo de corteza con detalles sin precedentes. En conjunto, los equipos están desarrollando algoritmos basados ​​en parte en lo que aprenden. Para el próximo verano, a cada uno de esos algoritmos se le dará un ejemplo de un elemento extraño y luego se le pedirá que seleccione instancias del mismo de entre miles de imágenes en una base de datos sin etiqueta. "Es un marco de tiempo muy agresivo", dijo Christof Koch, presidente y director científico del Instituto Allen para Ciencias del Cerebro en Seattle, que está trabajando con uno de los equipos.

Koch y sus colegas ahora están creando un diagrama de cableado completo de un pequeño cubo de cerebro: un millón de micras cúbicas, que suman un volumen quinientos centésimas de una semilla de amapola. Eso es órdenes de magnitud más grandes que el mapa de cableado completo más extenso hasta la fecha, que se publicó en junio pasado y tomó aproximadamente seis años en completarse.

Al final del proyecto IARPA de cinco años, denominado Inteligencia artificial de redes corticales (Microns), los investigadores intentan mapear un milímetro cúbico de corteza. Esa pequeña porción alberga alrededor de 100.000 neuronas, de 3 a 15 millones de conexiones neuronales o sinapsis, y suficiente cableado neuronal para abarcar todo el ancho de Manhattan, si todo estuviera desenredado y tendido de punta a punta.

Nadie ha intentado reconstruir un pedazo de cerebro a esta escala. Pero los esfuerzos a menor escala han demostrado que estos mapas pueden proporcionar información sobre el funcionamiento interno de la corteza. En un artículo publicado en la revista Nature en marzo, Wei-Chung Allen Lee -un neurocientífico de la Universidad de Harvard que está trabajando con el equipo de Koch- y sus colaboradores trazaron un diagrama de 50 neuronas y más de 1,000 de sus socios. Al combinar este mapa con información sobre el trabajo de cada neurona en el cerebro, algunos responden a una entrada visual de barras verticales, por ejemplo, derivaron una regla simple de cómo las neuronas en esta parte de la corteza están conectadas anatómicamente. Descubrieron que las neuronas con funciones similares tienen más probabilidades de conectarse y establecer conexiones más grandes entre sí que con otros tipos de neuronas.

Si bien el objetivo implícito del proyecto Microns es tecnológico: IARPA financia investigaciones que eventualmente podrían llevar a herramientas de análisis de datos para la comunidad de inteligencia, entre otras cosas, debe haber ideas nuevas y profundas sobre el cerebro. Andreas Tolias, un neurocientífico de Baylor College of Medicine que es co-líder del equipo de Koch, compara nuestro conocimiento actual de la corteza con una fotografía borrosa. Él espera que la escala sin precedentes del proyecto Microns ayude a agudizar esa visión, exponiendo reglas más sofisticadas que rigen nuestros circuitos neuronales. Sin conocer todas las partes componentes, dijo, "tal vez nos estamos perdiendo la belleza de la estructura".

Las unidades de procesamiento del cerebro

Los intrincados pliegues que cubren la superficie del cerebro forman la corteza cerebral, una hoja de tejido del tamaño de una pizza que se arrugó para que se ajuste a nuestro cráneo. Es en muchos sentidos el microprocesador del cerebro. La hoja, de aproximadamente tres milímetros de grosor, está formada por una serie de módulos repetitivos, o microcircuitos, similares a la serie de compuertas lógicas en un chip de computadora. Cada módulo consta de aproximadamente 100.000 neuronas dispuestas en una compleja red de células interconectadas. La evidencia sugiere que la estructura básica de estos módulos es aproximadamente la misma en toda la corteza. Sin embargo, los módulos en diferentes regiones del cerebro están especializados para fines específicos, como la visión, el movimiento o la audición.


Andreas Tolias (izquierda), que se muestra aquí con su alumno R.J. Cotton, es co-líder de uno de los equipos de Micron.

Los científicos solo tienen una idea aproximada de cómo se ven estos módulos y cómo actúan. En gran parte se han limitado a estudiar el cerebro a escalas más pequeñas: decenas o cientos de neuronas. Las nuevas tecnologías diseñadas para rastrear la forma, la actividad y la conectividad de miles de neuronas finalmente permiten a los investigadores analizar cómo las células dentro de un módulo interactúan entre sí; cómo la actividad en una parte del sistema puede provocar o frenar la actividad en otra parte. "Por primera vez en la historia, tenemos la capacidad de interrogar a los módulos en lugar de solo adivinar los contenidos", dijo Vogelstein. "Diferentes equipos tienen diferentes conjeturas para lo que hay adentro".

Los investigadores se centrarán en una parte de la corteza que procesa la visión, un sistema sensorial que los neurocientíficos han explorado intensamente y que los científicos de la computación se han esforzado por emular. "La visión parece fácil, solo abre los ojos, pero es difícil enseñar a las computadoras a hacer lo mismo", dijo David Cox, un neurocientífico de Harvard que dirige uno de los equipos de IARPA.

Cada equipo está comenzando con la misma idea básica de cómo funciona la visión, una teoría de décadas de antigüedad conocida como análisis por síntesis. De acuerdo con esta idea, el cerebro hace predicciones sobre lo que sucederá en el futuro inmediato y luego reconcilia esas predicciones con lo que ve. El poder de este enfoque radica en su eficiencia: requiere menos computación que la recreación continua en todo momento.

El cerebro puede ejecutar análisis por síntesis de diferentes maneras, por lo que cada equipo está explorando una posibilidad diferente. El equipo de Cox ve el cerebro como una especie de motor de física, con modelos de física existentes que utiliza para simular cómo debería ser el mundo. El equipo de Tai Sing Lee, codirigido por George Church, teoriza que el cerebro ha construido una biblioteca de partes, fragmentos de objetos y personas, y aprende las reglas sobre cómo unir esas partes. Las hojas, por ejemplo, tienden a aparecer en las ramas. El grupo de Tolias está trabajando en un enfoque más basado en datos, donde el cerebro crea expectativas estadísticas del mundo en el que vive. Su equipo probará varias hipótesis sobre cómo las diferentes partes del circuito aprenden a comunicarse.

Los tres equipos controlarán la actividad neuronal de decenas de miles de neuronas en un cubo objetivo del cerebro. Luego usarán diferentes métodos para crear un diagrama de cableado de esas celdas. El equipo de Cox, por ejemplo, cortará el tejido cerebral en capas más delgadas que un cabello humano y analizará cada corte con microscopio electrónico. Luego, el equipo coserá computacionalmente cada sección transversal para crear un mapa tridimensional densamente empaquetado que traza millones de cables neuronales en su intrincado camino a través de la corteza.

Con un mapa y un patrón de actividad en la mano, cada equipo intentará descubrir algunas reglas básicas que rigen el circuito. Luego programarán esas reglas en una simulación y medirán qué tan bien la simulación coincide con un cerebro real.

Tolias y colaboradores ya tienen una idea de lo que este tipo de enfoque puede lograr. En un artículo publicado en Science en noviembre, mapearon las conexiones entre 11,000 pares de neuronas, descubriendo cinco nuevos tipos de neuronas en el proceso. "Todavía no tenemos una lista completa de las partes que componen la corteza, cómo son las células individuales, cómo están conectadas", dijo Koch. "Eso es lo que [Tolias] comenzó a hacer".


Andreas Tolias y colaboradores mapearon las conexiones entre pares de neuronas y registraron su actividad eléctrica. La anatomía compleja de cinco neuronas (arriba a la izquierda) se puede reducir a un diagrama de circuito simple (arriba a la derecha). La inyección de corriente eléctrica en la neurona 2 hace que la neurona se dispare, lo que provoca cambios eléctricos en las dos células aguas abajo, las neuronas 1 y 5 (abajo). Revista Olena Shmahalo / Quanta; Andreas Tolias

Entre estas miles de conexiones neuronales, el equipo de Tolias descubrió tres reglas generales que gobiernan cómo las células están conectadas: Algunas hablan principalmente de neuronas de su propia clase; otros evitan a los de su propia clase, comunicándose principalmente con otras variedades; y un tercer grupo habla solo con algunas otras neuronas. (El equipo de Tolias definió sus células basándose en la anatomía neural más que en la función, lo cual hizo el equipo de Wei Lee en su estudio). Usando solo estas tres reglas de cableado, los investigadores pudieron simular el circuito con bastante precisión. "Ahora el desafío es descubrir qué significan algorítmicamente esas reglas de cableado", dijo Tolias. "¿Qué tipo de cálculos hacen?"

Redes neuronales basadas en neuronas reales

La inteligencia artificial cerebral no es una idea nueva. Las llamadas redes neuronales, que imitan la estructura básica del cerebro, fueron extremadamente populares en la década de 1980. Pero en ese momento, el campo carecía de la potencia informática y los datos de entrenamiento que los algoritmos necesitaban para ser realmente efectivos. Después de todo, no había disponibles todos los millones de imágenes de gatos etiquetados de Internet. Y aunque las redes neuronales han disfrutado de un gran renacimiento, los programas de reconocimiento de voz y rostro que se han convertido rápidamente en parte de nuestra vida cotidiana se basan en algoritmos de redes neuronales, como AlphaGo, la computadora que recientemente derrotó al mejor jugador Go del mundo: el las reglas que las redes neuronales artificiales usan para alterar sus conexiones son casi con certeza diferentes de las empleadas por el cerebro.

Las redes neuronales contemporáneas "se basan en lo que sabíamos sobre el cerebro en la década de 1960", dijo Terry Sejnowski, un neurocientífico computacional del Instituto Salk en San Diego que desarrolló algoritmos de redes neuronales tempranas con Geoffrey Hinton, un científico informático de la Universidad de Toronto. . "Nuestro conocimiento de cómo está organizado el cerebro está explotando".

Por ejemplo, las redes neuronales actuales se componen de una arquitectura de feed-forward, donde la información fluye de entrada a salida a través de una serie de capas. Cada capa está entrenada para reconocer ciertas características, como un ojo o un bigote. Ese análisis se alimenta, y cada capa sucesiva realiza cálculos cada vez más complejos sobre los datos. De esta forma, el programa finalmente reconoce una serie de píxeles de colores como un gato.

Pero esta estructura de feed-out deja fuera un componente vital del sistema biológico: la retroalimentación, tanto dentro de las capas individuales y de las capas de orden superior a las de menor orden. En el cerebro real, las neuronas en una capa de la corteza están conectadas a sus vecinos, así como a las neuronas en las capas superiores e inferiores, creando una intrincada red de bucles. "Las conexiones de retroalimentación son una parte increíblemente importante de las redes corticales", dijo Sejnowski. "Hay tantos comentarios como conexiones feed-forward".

Los neurocientíficos aún no entienden con precisión qué están haciendo estos circuitos de retroalimentación, aunque saben que son importantes para nuestra capacidad de dirigir nuestra atención. Nos ayudan a escuchar una voz en el teléfono mientras desactivamos los sonidos de la ciudad, por ejemplo. Parte del atractivo de la teoría de análisis por síntesis es que proporciona una razón para todas esas conexiones recurrentes. Ayudan al cerebro a comparar sus predicciones con la realidad.

Los investigadores de Microns intentan descifrar las reglas que rigen los ciclos de retroalimentación, como qué células conectan estos circuitos, qué desencadena su actividad y cómo afecta esa actividad a la salida del circuito, y luego traducen esas reglas en un algoritmo. "Lo que falta en una máquina en este momento es la imaginación y la introspección. Creo que el circuito de retroalimentación nos permite imaginar e introspectar en muchos niveles diferentes ", dijo Tai Sing Lee.

Tal vez los circuitos de retroalimentación un día doten a las máquinas de rasgos que consideramos como únicos humanos. "Si pudieras implementar [circuitería de retroalimentación] en una red profunda, podrías pasar de una red que tiene una especie de reacción instintiva (dar entrada y obtener resultados) a una que sea más reflexiva, que pueda comenzar a pensar en las entradas y las pruebas hipótesis ", dijo Sejnowski, quien se desempeña como asesor de la Iniciativa BRAIN de $ 100 millones del presidente Obama, de la cual el proyecto Microns forma parte.

Pistas para la conciencia

Al igual que todos los programas de IARPA, el proyecto Microns es de alto riesgo. Las tecnologías que los investigadores necesitan para el mapeo a gran escala de la actividad y el cableado neuronal existen, pero nadie las ha aplicado antes a esta escala. Un desafío será lidiar con la enorme cantidad de datos que produce la investigación: de 1 a 2 petabytes de datos por cubo milimétrico de cerebro. Es probable que los equipos necesiten desarrollar nuevas herramientas de aprendizaje automático para analizar todos esos datos, un ciclo de retroalimentación bastante irónico.

Tampoco está claro si las lecciones aprendidas de un pequeño pedazo de cerebro resultarán ilustrativas de los talentos más grandes del cerebro. "El cerebro no es solo una parte de la corteza", dijo Sejnowski. "El cerebro contiene cientos de sistemas especializados para diferentes funciones".

La corteza en sí misma se compone de unidades repetitivas que se ven más o menos iguales. Pero otras partes del cerebro pueden actuar de manera muy diferente. El aprendizaje de refuerzo empleado en el algoritmo AlphaGo, por ejemplo, está relacionado con procesos que tienen lugar en los ganglios basales, parte del cerebro involucrado en la adicción. "Si quieres una IA que vaya más allá del simple reconocimiento de patrones, vas a necesitar muchas partes diferentes", dijo Sejnowksi.

Sin embargo, si el proyecto tiene éxito, hará más que analizar datos de inteligencia. Un algoritmo exitoso revelará verdades importantes sobre cómo el cerebro da sentido al mundo. En particular, ayudará a confirmar que el cerebro sí opera a través del análisis por síntesis, que compara sus propias predicciones sobre el mundo con los datos entrantes que se filtran a través de nuestros sentidos. Revelará que un ingrediente clave en la receta de la conciencia es una mezcla siempre cambiante de imaginación más percepción. "Es la imaginación lo que nos permite predecir eventos futuros y usar eso para guiar nuestras acciones", dijo Tai Sing Lee. Al construir máquinas que piensan, estos investigadores esperan revelar los secretos del pensamiento.

viernes, 15 de diciembre de 2017

IBM desarrolla chip portátil para epilépticos, con estructura de red circular

Una chip portátil para predecir ataques

Por Emily Waltz || IEEE Spectrum



 Electroencefalograma (EEG) en una mujer de 27 años. Epilepsia rastreada en la pantalla.
Foto: Getty Images

Uno de los aspectos más difíciles de tener epilepsia es no saber cuándo ocurrirá la próxima convulsión en el caso de los epilépticos. Un sistema de advertencia portátil que detecta la actividad cerebral previa al ataque y alerta a las personas sobre su aparición podría aliviar parte de ese estrés y hacer que el trastorno sea más manejable. Con ese fin, los investigadores de IBM dicen que han desarrollado un chip portátil que puede hacer el trabajo; describieron su invención hoy en el diario de acceso abierto de Lancet, eBioMedicine.

Los científicos construyeron el sistema en una montaña de datos de ondas cerebrales recopiladas de pacientes con epilepsia. El conjunto de datos, informado por un grupo separado en 2013, incluyó más de 16 años de registros continuos de electroencefalografía (EEG) de la actividad cerebral y miles de ataques de pacientes a los que se les habían implantado electrodos quirúrgicamente en el cerebro.

Los científicos de IBM Research Australia luego usaron ese conjunto de datos para entrenar algoritmos de aprendizaje profundo llamados redes neuronales. Los algoritmos aprendieron a identificar patrones de actividad cerebral asociados con el inicio de una convulsión. IBM ejecuta las redes neuronales en TrueNorth, su chip de cómputo neuromórfico de potencia ultrabaja. Con el tamaño de una estampilla postal, el chip podría usarse en un dispositivo portátil para personas con epilepsia o conectado a un dispositivo móvil.

Un tercio de los pacientes con epilepsia no mejora con medicamentos u otro tratamiento, por lo que para esas personas, un sistema de predicción podría ser la única herramienta que les da cierto control sobre su enfermedad, dice Stefan Harrer, investigador de IBM Research Australia en Melbourne quien dirigió el proyecto De hecho, la carga de no saber cuándo ocurrirá un ataque tiende a llevar a las personas a evitar socializar, practicar deportes, viajar o hacer cualquier cosa que no quieran que les sorprenda con un ataque. Ese tipo de confinamiento, a su vez, a menudo conduce a la depresión. "Nuestra motivación", dice Harrer, "es devolver el control y el conocimiento a sus vidas".

Un mapa esquemático de la red cerebral
El sistema de IBM todavía está en la etapa de prueba de concepto y no ha sido probado en humanos. "Esta es una demostración de la viabilidad de construir un sistema de predicción de ataques verificable", dice Harrer. Su grupo probó el chip en un estudio simulado, utilizando datos de actividad cerebral recopilados previamente.

La sensibilidad del dispositivo se puede marcar o marcar según las necesidades del paciente. En el modo de alta sensibilidad, el sistema predijo con precisión las convulsiones más del 90 por ciento del tiempo, pero también pasó mucho tiempo en el modo de advertencia. "Necesitamos reducir la tasa de falsos positivos antes de que este sistema pueda usarse como un dispositivo real en los pacientes", dice Harrer.

Los patrones de actividad cerebral que indican una inminente convulsión son notoriamente difíciles de identificar. Los patrones difieren no solo de persona a persona, sino que también pueden cambiar a lo largo de la vida de una persona. Eso significa que los algoritmos de aprendizaje profundo deben ser lo suficientemente educados para identificar muchos patrones diferentes de actividad cerebral clave, y lo suficientemente ágiles para adaptarse con el tiempo a medida que cambian los patrones de cada persona.

IBM es uno de varios grupos que trabajan en sistemas de predicción de ataques. Los investigadores de la Universidad de Melbourne que recopilaron los 16 años de datos de EEG también desarrollaron algoritmos para identificar y predecir el inicio de las convulsiones. Las universidades y los hospitales de investigación incluso han organizado concursos para fomentar la innovación en esta área.

Pero las restricciones previas en las capacidades de computación tienen una robustez limitada de estos algoritmos, así como también de sus capacidades en tiempo real, dice Harrer. Por ejemplo, el estudio de la Universidad de Melbourne se basó en una combinación de algoritmos de aprendizaje automático y expertos médicos humanos que seleccionaban a mano patrones que parecían dignos de mención.

Debido a que el proceso requirió mucha mano de obra, el grupo tuvo que concentrarse en períodos seleccionados de actividad cerebral, en lugar de todo el conjunto de datos, para hacer el análisis más aceptable. El resultado fue la disminución de la solidez de las predicciones en algunos pacientes. También significaba que el sistema no podría adaptarse en tiempo real a los patrones de actividad cerebral cambiantes de una persona.

El chip de IBM analizó el conjunto de datos de registro de EEG de la Universidad de Melbourne y no se basó en características de datos recogidos por el ser humano. "Permitimos que el algoritmo lo explore y encuentre patrones de interés en sí mismo", dice Harrer. La computadora "constantemente entrena y vuelve a entrenar en esos patrones cambiantes a lo largo del tiempo", lo que hace que un sistema de predicción en tiempo real sea factible, afirma.

Harrer dice que a IBM le gustaría mejorar el rendimiento del algoritmo explorando otras arquitecturas de redes neuronales e incluyendo otros factores y biomarcadores. También le gusta encontrar una forma de entrenar los algoritmos en datos recolectados fuera del cráneo, en lugar de los electrodos implantados en el cerebro.

sábado, 28 de mayo de 2016

Inteligencia artificial: Cómo funcionan las redes neuronales

Revelando las capas ocultas de aprendizaje profundo
Una simulación de visualización de la red neuronal interactiva ofrece ideas sobre cómo aprenden las máquinas
Por Amanda Montañez - Scientific American



Crédito: Daniel Smilkov y Shan Carter

En un artículo reciente de la revista Scientific American titulado “Springtime for AI: The Rise of Deep Learning,”, el informático Yoshua Bengio explica por qué las redes neuronales complejas son la clave de la verdadera inteligencia artificial como la gente ha imaginado tiempo. Parece lógico que la manera de hacer que las computadoras tan inteligentes como los seres humanos es que programarlos para comportarse como los cerebros humanos. Sin embargo, teniendo en cuenta lo poco que sabemos de cómo funciona el cerebro, esta tarea parece más que un poco desalentador. Entonces, ¿cómo el aprendizaje profundo trabajo?
Esta visualización por Jen Christiansen explica la estructura básica y la función de las redes neuronales.


Gráfico de Jen Christiansen; PunchStock 

Evidentemente, estos llamados "capas ocultas" juegan un papel clave en la descomposición de componentes visuales para decodificar la imagen en su conjunto. Y sabemos que hay una orden de cómo actúan las capas: desde la entrada hasta la salida, cada capa se encarga de información cada vez más compleja. Pero más allá de eso, las capas ocultas, como su nombre indica, son todo un misterio.
Como parte de un proyecto de colaboración reciente llamado tensor de flujo, Daniel Smilkov y Shan Carter crearon una zona de juegos de redes neuronales, que tiene como objetivo desmitificar las capas ocultas, pues permite a los usuarios interactuar y experimentar con ellos.


Visualizaciòn por Daniel Smilkov y Shan Carter
Clic en la imagen para iniciar la INTERACTIVA

Hay mucho que hacer en esta visualización, y yo estaba recientemente la suerte de escuchar Fernanda Viégas y Martin Wattenberg rompen algunos de los que en su charla de apertura en OpenVisConf. (Fernanda y Martin fueron parte del equipo detrás de Tensor de flujo, que es una herramienta mucho más complejo, de código abierto para el uso de redes neuronales en aplicaciones del mundo real.)
En lugar de algo tan complicado como caras, el patio de recreo red neuronal utiliza puntos de color azul y naranja dispersas dentro de un campo de "enseñar" a la máquina cómo encontrar y patrones de eco. El usuario puede seleccionar diferentes empresas punto-arreglos de diferentes grados de complejidad, y manipular el sistema de aprendizaje mediante la adición de nuevas capas ocultas, así como nuevas neuronas en cada capa. Entonces, cada vez que el usuario pulsa el botón "play", se puede ver como los cambios de fondo degradado de color para aproximarse a la disposición de los puntos de color azul y naranja. A medida que el patrón se hace más compleja, las neuronas y las capas adicionales ayudan a la máquina para completar la tarea con más éxito.


La máquina, resuelve esta disposición directa de la estrategia puntos, utilizando sólo una capa oculta con dos neuronas.

La máquina lucha por decodificar esta forma de espiral más complejo.

Además de las capas de neuronas, la máquina tiene otras características significativas, tales como las conexiones entre las neuronas. Las conexiones aparecen, bien como líneas de color azul o naranja, azul ser positivo, es decir, la salida de cada neurona es el mismo que su contenido y naranja de ser negativo, lo que significa que la salida es lo contrario de los valores de cada neurona. Además, el grosor y la opacidad de las líneas de conexión indican la confianza de la predicción de cada neurona está haciendo, al igual que las conexiones en nuestro cerebro se fortalecen a medida que avanzamos a través de un proceso de aprendizaje.
Curiosamente, a medida que vaya mejor en la construcción de redes neuronales para las máquinas, podemos terminar revelando nueva información sobre el funcionamiento de nuestro propio cerebro. Visualizar y jugar con las capas ocultas parece una gran manera de facilitar este proceso al mismo tiempo hacer el concepto de aprendizaje profundo accesible a un público más amplio.

domingo, 27 de diciembre de 2015

Neurociencia: Hubs en el cerebro humano

Centros de distribución de redes en el cerebro humano
Martijn P. van den Heuvel y Olaf Sporns
DOI: http://dx.doi.org/10.1016/j.tics.2013.09.012
Trends in Cognitive Science



El papel central de los procesos de integración y comunicación

Desde el comienzo de la neurociencia moderna, el cerebro generalmente ha sido visto como un órgano anatómicamente diferenciados cuyas partes y regiones que muchos están asociados con la expresión de las facultades específicas mental, rasgos de comportamiento, o las operaciones cognitivas [1]. La idea de que las regiones cerebrales individuales son funcionalmente especializada y hacen contribuciones específicas a la mente y la cognición con el apoyo de una gran cantidad de evidencia de estudios tanto anatómicos y fisiológicos, así como de neuroimagen no invasiva. Estos estudios han documentado propiedades altamente específicos celulares y de circuitos, las respuestas neuronales finamente sintonizados y perfiles de activación regionales muy diferenciados a través de muchas regiones del cerebro humano, incluyendo la corteza cerebral. Especialización funcional se ha convertido en uno de los fundamentos teóricos perdurables de la neurociencia cognitiva.

La especialización solo, sin embargo, no puede explicar completamente la mayoría de los aspectos de la función cerebral. La evidencia creciente sugiere que los procesos de integración y las interacciones dinámicas a través de múltiples regiones y sistemas distribuidos sustentan los procesos cognitivos tan diversos como el reconocimiento visual [2], el idioma [3], el control cognitivo [4], la emoción [5], y la cognición social [6]. ¿Cuál es el sustrato neural que permite la integración de la información distribuida neuronal y por lo tanto la aparición de estados mentales y cognitivas coherentes? Dos aspectos de la organización del cerebro parecen particularmente importantes. En primer lugar, la integración depende de la comunicación neural entre regiones especializadas del cerebro, se desarrolla dentro de una red de proyecciones interregionales [7, 8, 9, 10], lo que da lugar a patrones a gran escala de sincronización [11, 12] y el flujo de información [13] entre los elementos conectados. En segundo lugar, importantes funciones integradoras son realizadas por un conjunto específico de las regiones del cerebro y sus conexiones anatómicas. Estas regiones son capaces de respuestas complejas y diversas (regiones multimodales o transmodales [14]), se sitúan en los niveles más altos dentro de una jerarquía cortical [15], y representan focos de convergencia o divergencia de la información neuronal más especializado ('zonas de confluencia' [16, 17]).

La organización anatómica y funcional del cerebro puede ser abordado desde la perspectiva de las redes complejas [18, 19, 20, 21]. Abrazando la ciencia a la red como un marco teórico para la conectividad del cerebro (ver Glosario), numerosos estudios han comenzado matemáticamente para describir sistemas neuronales en términos de grafos o redes que comprenden nodos (neuronas y / o regiones del cerebro) y los enlaces (conexiones sinápticas, vías interregionales). El mapa de la red global del sistema nervioso de un organismo dado, su conectoma [22, 23], representa una base estructural de las interacciones dinámicas que surgen entre sus elementos neurales. Un objetivo principal de los estudios conectoma es desentrañar la arquitectura de las redes cerebrales y para explicar cómo la topología de las redes estructurales forma y modular la función cerebral. La ciencia de la red o "teoría de grafos 'pueden utilizarse para dilucidar las características clave de la organización de la arquitectura conectoma del cerebro y para hacer predicciones sobre el papel de los elementos de la red y la red de atributos en la función cerebral. Existe una fuerte convergencia a través de muchos estudios que indican que conectomas tan diversos como la red celular de los nematodos Caenorhabditis elegans y la corteza cerebral humana combinan atributos que promueven la modularidad (especialización) con los atributos que garantizan una comunicación eficaz (integración). Estos últimos incluyen los elementos de red que se refieren a menudo como centros de la red, en general se caracterizan por su alto grado de conectividad con otras regiones y su ubicación central en la red.

El objetivo de esta revisión es examinar el concepto de centros de la red en el contexto de los datos del cerebro, con respecto a su ubicación central en la estructura general de la red y de su supuesto papel en la comunicación neuronal y la función cerebral integradora. Comenzamos con una breve descripción de las diversas medidas de red que se pueden utilizar para detectar posibles candidatos para centros de la red en los conjuntos de datos del cerebro humano y animal. A continuación, ofrecemos un estudio de los resultados empíricos actuales sobre la estructura de cubo en redes conectoma, con un enfoque en las redes estructurales y funcionales. Se discuten varios hallazgos recientes de estudios de redes que ponen de relieve el papel central de estos centros candidatos, tanto en el cerebro sano y enfermo. La integración a través de la metodología y los resultados empíricos, ofrecemos un marco conceptual que examina los posibles roles funcionales de los centros neuronales desde la perspectiva de la ciencia de las redes, especialmente en el contexto de los modelos de redes de comunicación, la integración y el flujo de información. La revisión concluye con una reflexión sobre algunas de las nuevas ideas que los modelos de red han contribuido a nuestra comprensión de los sustratos neuronales que permiten la función cerebral compleja.

Aspectos metodológicos: la detección y clasificación de los centros de conexiones en redes cerebrales
Redes cerebrales pueden describirse matemáticamente como grafos, que comprende esencialmente conjuntos de nodos (elementos neuronales) y enlaces (sus interconexiones) cuyos pares acoplamientos se resumen en la matriz de conexión de la red y cuya disposición define la topología de la red (Figura 1). La extracción de las redes cerebrales a partir de datos de imagen humanos, así como las muchas oportunidades y limitaciones de los enfoques basados ​​en el grafo han sido objeto de numerosas críticas recientes [20, 24, 25, 26, 27, 28]. Un aspecto atractivo de los modelos del grafo es que la teoría de grafos ofrece una amplia gama de medidas basadas en datos objetivos para caracterizar la topología de las redes, muchos de los que originalmente se han definido en otras disciplinas [29, 30, 31]. Un subconjunto importante de estas medidas identifica elementos de la red (nodos o enlaces) que son propensos a tener una fuerte influencia en la integración de información y comunicación y por lo tanto en la función global de la red.



Figura 1. Atributos de red básicos. (A) las redes cerebrales pueden ser descritas y analizadas en forma de grafos que comprenden un conjunto de nodos (que describe neuronas regiones / cerebro) y una colección de enlaces (que describen las conexiones estructurales o relaciones funcionales). La disposición de los nodos y los enlaces define la organización topológica de la red. (B) Una ruta de acceso corresponde a una secuencia de aristas únicas que se cruzó cuando se viaja entre dos nodos de la red. Nodos de bajo grado son nodos que tienen un número relativamente bajo de los enlaces; nodos de alto grado (a menudo denominados hubs) son nodos que tienen un número relativamente alto de enlaces. (C) Un módulo incluye un subconjunto de nodos de la red que muestran un nivel relativamente alto de la conectividad dentro del módulo y un nivel relativamente bajo de la conectividad intermódulos. 'Centros provinciales' son nodos de alto grado que se conectan principalmente a los nodos en el mismo módulo. 'Hubs' del conector son nodos de alto grado que muestran un perfil de conectividad diversa mediante la conexión a varios módulos diferentes dentro de la red.


Detección de Hubs: centralidad, modularidad, e interconexiones

En el marco de la ciencia de las redes, los nodos que se colocan para hacer fuertes contribuciones a la función de la red global se refieren generalmente como centros de la red. Hubs pueden detectarse mediante numerosas medidas diferentes de grafos, la mayoría de los cuales expresan aspectos de centralidad nodo [32, 33] (Figura 1). La medida más simple grafo utilizado para la identificación de hubs es el grado de nodo, también llamado centralidad de grado, que es igual al número de aristas que son mantenidos por cada nodo. Muchas redes del mundo real, incluyendo los sistemas biológicos, se ha demostrado que presentan distribuciones de grado 'de cola pesados', con un pequeño número de elementos que presentan un alto grado de conectividad. Aunque centralidad nodo simplemente cuenta las relaciones, medidas como la centralidad vector propio o nodos favor centralidad pagerank que se conectan a otros nodos altamente centrales, una propiedad que se puede calcular a partir de la descomposición vector propio del grafo[34]. Un aspecto más global de centralidad es capturado por considerar el diseño de rutas de comunicación cortas entre nodos. Proximidad central corresponde a la distancia media (la longitud de los caminos más cortos) entre un nodo dado y el resto de la red. Betweenness centralidad [35] expresa el número de vías de comunicación cortas que un nodo (o enlace) participa en. Sin embargo, otra serie de medidas, incluyendo por ejemplo la vulnerabilidad [36] y dinámica importancia [37], intenta evaluar el impacto de nodo ( o enlace) eliminación con respecto a la comunicación de la red global o la sincronización mediante la comparación de las métricas de grafo antes y después del nodo (o enlace) eliminación. Aunque ninguna medida es necesaria y suficiente para la definición de centros de la red, las clasificaciones de los nodos de acuerdo a diferentes criterios de centralidad son a menudo altamente correlacionados. Por lo tanto, a menudo es ventajoso para detectar hubs mediante la agregación de las clasificaciones a través de diferentes medidas [33, 38, 39]. Varias medidas de centralidad, incluyendo intermediación y la vulnerabilidad, también se pueden aplicar para identificar los enlaces de red altamente centrales.

Un enfoque cada vez más importante para la definición de centros de la red se basa en su papel en la integración de las comunidades de la red o módulos [40, 41]. Comunidades de red son conjuntos de nodos que están más densamente vinculados entre sí que con los nodos en otras comunidades, y varios algoritmos y parámetros para la detección de módulos de red disponibles. Comunidades de red son descriptores importantes de organización en red del cerebro y han demostrado su utilidad en las redes funcionales de mapeo en reposo [42] y los estudios coactivación tareas evocado [43]. Una vez que un módulo de partición óptima ha sido identificado, el patrón de cada nodo de conexiones relativas a esta partición se puede cuantificar. El coeficiente de participación [44] se basa en la diversidad de perfil de conexión de un nodo. Entre los nodos de alto grado, el coeficiente de participación que diferencia a los centros que principalmente enlace nodos dentro de un solo módulo ('hubs provincial') de otros que predominantemente enlazan nodos a través de diferentes módulos ('hubs conector') [44]. Nodos de bajo grado que conectan predominantemente a los nodos en su propio módulo y, por tanto, presentan un coeficiente de baja participación se clasifican como "nodos periféricos. Otros enfoques propuestos se basan en una evaluación de la colocación de las regiones del cerebro (es decir, nodos) en múltiples módulos funcionales o redes funcionales [45].

Una vez concentradores de red candidato han sido identificados, una importante pregunta adicional se refiere a sus interconexiones mutuas. Específicamente, puede ser de interés para determinar si los nodos de cubo son más altamente interconectada de lo previsto por azar (es decir, predicha por un modelo nulo al azar que conserva grados de nodo sino que destruye topología global). Dichos colectivos de nodos de alto grado y sus enlaces de interconexión se refieren como un "club de ricos" [46], un atributo de red que tiende a aumentar aún más la influencia de sus miembros, facilitando sus interacciones mutuas. Un concepto relacionado es el del núcleo estructural [47], determinado por un proceso de poda recursiva de nodos de grado creciente que revela subconjuntos de nodos que son altamente resistentes en virtud de ser densamente interconectados.

Hubs en redes estructurales y funcionales

Los patrones de conectividad cerebral se pueden grabar usando varios métodos anatómicas o fisiológicas que producen, respectivamente, las redes cerebrales estructurales y funcionales. Estos dos dominios de redes cerebrales difieren en la forma en que se construyen y expresan diferentes aspectos de la realidad neurobiológica subyacente. Esta distinción fundamental se vuelve importante en la interpretación de datos de la red de sistemas neurales, incluyendo centros putativos. 'Redes estructurales' describen la conectividad anatómica, que tiende a ser relativamente estable en escalas de tiempo más cortos (segundos a minutos), pero pueden estar sujetos a la plasticidad en escalas de tiempo más largas (horas o días). Es importante destacar que los enlaces de las redes estructurales corresponden a (axonal, sináptica) enlaces físicos que conforman la infraestructura biológica para la señalización neuronal y la comunicación. Por el contrario, "las redes funcionales 'se derivan de descripciones estadísticas de los datos de series de tiempo, que en estado de reposo (fMRI) los estudios de resonancia magnética funcionales son a menudo representados como lineales (Pearson) correlaciones cruzadas. Estos cálculos estadísticos son altamente dependientes del tiempo, modulada por estímulos y el contexto de tareas, y exhiben fluctuaciones no estacionarias significativos incluso en reposo [48]. Los enlaces en redes funcionales por lo tanto no representan conexiones anatómicas y no deben interpretarse como tales. Por ejemplo, las comparaciones directas de las redes estructurales y funcionales obtenidos en el registro han demostrado que la conectividad funcional, especialmente cuando se estima a través de la correlación cruzada, enlaces muchos pares estructuralmente no relacionados nodo [49, 50, 51] y es propenso a transitividad, lo que conduce a una propensión a la 'conexión a través de' y de alta clustering [52].

En el contexto de esta revisión, es especialmente importante tener en cuenta que las conexiones funcionales no transmiten señales neuronales; más bien, las conexiones funcionales son un reflejo de los acontecimientos de señalización y comunicación que se desarrollan dentro de la red estructural subyacente. Por lo tanto, a pesar de todas las medidas del cubo antes descritos tienen sentido cuando se aplica a las redes estructurales, la interpretación de los centros derivadas de redes funcionales basa en medidas como grado [53] o centralidad de intermediación es menos sencilla. Un posible enfoque prometedor que aparece aplica a través de ambas redes estructurales y funcionales es definir los centros en base a la estructura de la comunidad de la red.

Los resultados empíricos: cubos de candidatos en el conectoma estructural y funcional

Hubs Estructurales

La compilación de mapas conectoma macroescala del cerebro humano a partir de datos de imágenes de difusión, varios estudios han señalado la existencia de un conjunto específico de las regiones del cubo (Figura 2). Red de análisis han identificado consistentemente la precuneus, anterior y cingulada posterior corteza, corteza insular, corteza frontal superior, la corteza temporal, y la corteza parietal lateral como regiones densamente anatómicamente conectados con una posición central en la red global [38, 54, 55, 56, 57, 58, 59, 60, 61, 62], el uso de diferentes medidas de grafo. Por ejemplo, un análisis de la vulnerabilidad estructural sugiere un papel importante para la precuneus, insular, parietal superior, y las regiones frontales superiores en los procesos globales de comunicación [62]. Un papel central similar para el precuneus y circunvolución frontal superior surgió de la aplicación de las medidas de nivel de nodo y la intermediación centralidad [61]. Ranking de las regiones del cerebro según la puntuación obtenida en múltiples indicadores de centralidad (por ejemplo, grado, intermediación y proximidad central) confirmó una posición central de la red para el parietal medial, frontal, y las regiones insulares [38, 55, 56, 59, 63, 64 ], los resultados se muestran para ser consistente a través de diferentes parcellations corticales y subcorticales.


 
Figura 2. Resultados empíricos sobre los centros estructurales. Hallazgos recogidos en centros estructurales en la corteza cerebral humana, derivados de los datos de imágenes de difusión. (A) Un mapa centralidad que muestra la distribución de las puntuaciones de centralidad de intermediación entre las regiones corticales, identificando el dorsal corteza prefrontal superiores (I), los precuneus (II), y la circunvolución occipital superior y medial (III) como regiones muy centrales. (B) Un mapa cortical grupo promediada de un puntaje acumulado de nodos pertenecientes a los nodos de más alto rango a través de varios indicadores de grafos (por ejemplo, centralidad de grado, más corta longitud de trayectoria, centralidad de intermediación), la identificación de los precuneus (a), la corteza cingulada posterior (b), la corteza cingulada anterior (c), la corteza frontal superior (d), la corteza prefrontal dorsolateral (e), y la corteza insular (f), así como las regiones del occipital (g) y la circunvolución temporal superior y media (h) como regiones centrales del cerebro. (C) ilustra la consistencia de la clasificación centro estructural (por la distribución de las puntuaciones de grado nodo) entre dos sujetos (sujetos 1 y sujeto 2) y dos métodos de adquisición (imágenes de tensor de difusión [DTI], las imágenes de alta angular difusión resolución [HARDI]) . (A) Adaptado y reproducido a partir de [61], (B) adaptado y reproducido a partir de [38], (C) adaptado y reproducido a partir de [60].


Estas clasificaciones basadas en la red de centros cerebrales estructurales son consistentes con el trabajo clásico sobre la importancia funcional de estos parietal medial, frontal, y las regiones insulares. Los registros electrofisiológicos han informado de largo la participación de las áreas de asociación corticales en diversas tareas cognitivas, clasificándolos como áreas transmodales o heteromodal que están implicados en una amplia gama de procesos cognitivos [14]. El análisis de redes ahora sugiere que las propiedades integradoras y diversas de estas regiones se deben a su incrustación central dentro de la topología de conexión del cerebro, lo cual está en línea con la idea de que las propiedades funcionales de las regiones son moldeadas por su "huella digital conexional '[65] .

Observaciones recientes han sugerido que los centros cerebrales estructurales no sólo están muy conectados con el resto del cerebro, sino también mantener un alto número de conexiones anatómicas entre el uno al otro. Examinar el nivel de conectividad de los nodos hub, El grafo de estudios analíticos de redes cerebrales estructurales han señalado que las regiones del cubo del cerebro están más densamente interconectado de lo previsto sobre la base de su grado solamente, por lo tanto, dando lugar a la formación de un "núcleo" densamente interconectado [ 63, 66] o ricos del club [54, 57, 64, 67, 68]. Organización Rich-club de los centros neuronales puede tener consecuencias funcionales importantes al aumentar la robustez de la comunicación entre centro y promover la comunicación eficaz y la integración funcional a través del cerebro.

Además densa conectividad anatómica, varios otros aspectos estructurales y funcionales de la arquitectura neuronal clasifican estas regiones hub candidato excepcional o "ricos" (Recuadro 1). Concentradores de red estructurales y sus conexiones asociadas ocupan desproporcionadamente altos niveles de volumen de cableado, se encuentran entre las regiones más metabólicamente activas en el cerebro, y muestran complejas propiedades celulares y microcircuitos [69]. Conjuntamente, estos atributos distintivos de centros de la red pueden ser indicativos de diferencias en su fisiología locales, el metabolismo de la energía, y el procesamiento neural que los diferencian de otros elementos de la red, menos centrales.


Los hubs estructurales se han identificado no sólo en el cerebro humano, sino también en varias otras especies de mamíferos y por diferentes metodologías de recopilación de datos (Figura 2 y Figura 3). La ubicación de centros de la red dentro de la corteza cerebral ha sido notablemente consistente, con análisis de grafo de las cortezas insulares [56, 57 redes cerebrales gato que convergen en un conjunto de regiones de alto grado en el parietal, frontal humana, macaco, y, y, 70 , 71, 72, 73, 74]. De alto grado 'neuronas hub' también se ha demostrado que estar presente en la red neuronal de C. elegans, lo que sugiere que la existencia de centros de la red puede ser una característica universal de la organización conectoma través de muchas, si no todas las especies con un sistema nervioso central . Esta universalidad puede estar relacionado con obligatorios compensaciones entre el coste de cableado, las limitaciones espaciales y metabólicas, y la optimización de rendimiento de la red [69, 75].


Figura 3. Hubs través de las especies de mamíferos. Hallazgos recopilados de estudios recientes que muestran consistencia de la organización cortical cubo y ricos-club en todas las especies humana, macacos, y gatos. (A) los mapas corticales de las regiones del cubo (en rojo) en las tres especies examinadas (izquierda: Grupo promediada mapa humano, de baja resolución se muestra, 34 regiones corticales; media: macaco, 242 regiones corticales; derecha: gato, 65 regiones corticales por hemisferio), predominantemente solapando la cortical medial parietal (precuneus / cingulada posterior), la corteza cingulada, la corteza medial y lateral superior, frontal, la corteza cingulada anterior, lateral corteza parietal superior, y la corteza insular. (B) El conjunto de conexiones que abarcan entre nodos hub (en rojo) en un grafo circular, con los nodos a lo largo del anillo ordenado de acuerdo con su asignación de módulo, lo que refleja una compartimentación estructural o funcional de la corteza. Esto ilustra que los nodos hub participan en dominios más funcionales y estructurales y que las vías de sustancia blanca (derivados de cualquiera de las imágenes o el trazado de las vías de difusión) entre regiones hub contribuyen fuertemente a intermódulos conexiones. Los datos en (A) y (B) adaptados y reproducidos a partir de [57, 67, 144].

Centros de distribución funcionales

Además de la clasificación de los centros sobre la base de la conectividad anatómica, numerosos estudios han examinado también la existencia de '' hubs funcionales derivados de redes de interacciones dinámicas entre las regiones del cerebro (Figura 4). Varios estudios se han realizado sobre las matrices de conectividad funcional-vóxel sabio o región-sabio, la medición de la densidad o "concentración" de la conectividad funcional local y global de las regiones de la red. Estos estudios han sugerido un fuerte enfoque de las interacciones funcionales en el precuneus ventral y dorsal, posterior y giro cingulado anterior, córtex frontal ventromedial y regiones del cerebro parietal inferior (por ejemplo, [76, 77, 78, 79]). Las localizaciones espaciales de estos centros corticales funcionales sugieren solapamiento significativo con subregiones de la red en modo automático [80].

Los enfoques más recientes a la detección de los centros funcionales tienden a centrarse en la caracterización de la heterogeneidad funcional de regiones corticales. Estos métodos implican una evaluación del nivel de coactivación de las regiones a través de una amplia gama de tareas cognitivas [43], la participación de los centros corticales en múltiples dominios funcionales [81], y un examen de la distribución de las trayectorias funcionales dentro de la conectividad funcional de la red patrón [82]. Este último estudio utilizó un enfoque de "conectividad paso a paso 'trazar vías de información procedentes de (por ejemplo, visual, auditivo y motor) regiones unimodales a las regiones cognitivas de orden superior. Regiones clasificadas como centros multimodales y funcionales incluyen el parietal superior y la corteza frontal superior y la anterior y posterior giro cingulado, así como partes de la ínsula anterior, todas las regiones que forman parte de las redes en estado de reposo cognitivas tales como el modo por defecto y salience- redes de procesamiento. Otros enfoques se han dirigido a elucidar el carácter heterogéneo de los centros funcionales mediante el examen de la participación de las regiones corticales a través de múltiples redes funcionales [79] o el nivel de solapamiento entre diferentes dominios funcionales [83]. No se encontraron regiones primaria (por ejemplo, motora primaria, visual, y la corteza auditiva) para participar predominantemente en una sola o un pequeño número de redes funcionales, mientras que las regiones de cubo putativos que incluyen porciones de la corteza frontal superior medial, la corteza cingulada anterior, y precuneus / No se encontraron circunvolución cingular posterior a participar en varias redes funcionales.


Figura 4. Resultados empíricos sobre los centros derivados de los estudios funcionales. Los resultados de una selección de los estudios que analizan la formación de centro funcional de la corteza cerebral humana derivada de los estudios de estado descansando funcionales de resonancia magnética (fMRI). Los estudios de resonancia magnética funcional en estado de reposo (A) Clasificadas resultados de tres seleccionados (A-1, A-2, A-3), reportando una alta densidad de conectividad funcional en la corteza cingulada corteza precuneus / posterior, lateral corteza parietal inferior, la corteza orbitofrontal medial , y medial corteza frontal superior. (B) Un mapa cortical que resulta de un análisis de la conectividad por etapas de las redes cerebrales funcionales derivados sobre la base de la grabación fMRI en estado de reposo. Después de las conexiones de un paso de red funcional a paso a partir de las regiones principales, las regiones corticales fueron clasificados como secundarios (primeros pasos, rojo) primarias /, multimodal (pasos intermedios, verde), o regiones hub corticales (pasos finales, azul) sobre la base de su posición en los caminos trazados funcionales. El diagrama de la red correspondiente se muestra a la derecha, con nodos de colores de acuerdo a su clasificación. A-1 adaptado y reproducido a partir de [107], A-2 adaptado y reproducido a partir de [80], A-3 adaptado y reproducido a partir de [78]. (B) Adaptado y reproducido de [82].

La capacidad adaptativa para vincular e interactuar con un conjunto muy diverso de regiones del cerebro es un sello de 'concentradores de red flexibles' y añade la importante dimensión de tiempo y variabilidad temporal a la definición de las regiones hub funcionales. Mirando a través de múltiples tareas, estudios recientes fMRI identificaron un conjunto de regiones del cerebro frontoparietal que participan en diversas tareas cognitivas [43, 84, 85] cuya conectividad funcional patrones se pueden actualizar rápidamente en diferentes contextos de trabajo [84]. Los estudios que examinan las propiedades no estacionarias de interacciones funcionales de las regiones del cerebro con magnetoencefalografía (MEG) apoyan aún más un papel central de la red para las regiones parietal medial. Por ejemplo, el examen de los patrones de sincronización dinámicas de regiones corticales durante las grabaciones MEG-estado descansando mostrar la corteza cingulada posterior para mostrar un alto nivel de interacciones entre redes [86], lo que sugiere que esta región puede servir como un concentrador de red central y flexibles .

En muchos estudios, la detección de los centros funcionales se basa en el análisis de grafos de redes funcionales derivados de las estimaciones de relaciones estadísticas por pares, a menudo simplemente expresa en términos de los coeficientes de correlación entre las series de tiempo registrado de señales neuronales o hemodinámicos [por ejemplo, MEG, electroencefalografía (EEG), fMRI grabaciones en estado de reposo]. Dada la amplia gama de grabación enfoques empíricos y métodos de análisis, la identificación de los centros funcionales depende de la metodología utilizada para la estimación de los enlaces de la red, así como los indicadores de grafo utilizado para expresar 'centralidad funcional "[78]. Por ejemplo, algunos estudios han señalado alta superposición espacial de los centros funcionales con las regiones de la red en modo automático [79, 80, 87, 88], lo que sugiere un papel central para la red de modo por defecto en la estructura general de la red. Otros han, sin embargo, observó que un alto nivel de conectividad funcional de estas regiones puede ser debido a las interacciones locales dentro de la red en modo automático [89] y que, en general, el nivel de grado funcional de una región pueden estar sesgados por el tamaño de la red funcional que participa en una región [53].

Diferencias y el desarrollo de los centros individuales

Las variaciones individuales en el perfil de la conectividad y el nivel de acoplamiento funcional de los centros corticales se han relacionado con las diferencias individuales en la inteligencia [90, 91, 92, 93], el rendimiento en diferentes dominios cognitivos [94], las diferencias en la integración interhemisférica [95], y las diferencias individuales en los rasgos de personalidad [96]. Por ejemplo, la eficiencia de la comunicación de las regiones parietales y hub prefrontal medial se ha relacionado con diferentes subescalas de la inteligencia [91] y el nivel de conectividad global de las regiones de cubo frontales se encontró para predecir las variaciones individuales en el control cognitivo y el rendimiento intelectual [94]. Además, las diferencias sutiles en el perfil de la conectividad funcional de un conjunto básico de los centros funcionales parietal medial y cingulado se han asociado con la variabilidad interindividual en los rasgos de personalidad tales como neuroticismo, extraversión, la motivación, la empatía y la reflexión prospectiva [96]. Los estudios con gemelos han sugerido que la topología de la conectividad funcional en el adulto y el cerebro infantil es altamente heredable [97, 98, 99, 100], en particular en las regiones que muestran una alta densidad de conectividad funcional [98]. Otros estudios han demostrado una fuerte influencia genética en la integridad estructural de largo alcance tractos de sustancia blanca, con efectos sobre la modulación de rendimiento intelectual [101].

Los estudios de conectoma largo de la vida humana están empezando a arrojar luz sobre los patrones en el desarrollo de atributos de red, incluyendo la incorporación espacial y papel funcional de los centros del cerebro [102, 103, 104]. Estudios de desarrollo transversales han sugerido que hubs estructurales emergen relativamente temprana durante el desarrollo del cerebro, con conectividad de cingulada medial posterior, frontal, y las regiones insulares ya presentes en el lactante postnatal [105], así como el cerebro niño de corta edad [106], pero en un estado funcional inmadura relativo [107] y con los ejes funcionales confinados en gran parte a las regiones visuales y motoras primarias [107]. Desde la infancia a la adolescencia, las regiones hub siguen siendo relativamente estable, mientras que sus interacciones con otras partes de la red sufren cambios de desarrollo [106, 108, 109, 110] (véase también Menon, este número). Por ejemplo, la fuerza de las interacciones funcionales entre ejes frontales y frontal, parietal, distribuido y regiones corticales temporales aumenta desde la infancia a la adolescencia [108], incluidas las conexiones dentro de una red frontoparietal implicado en el control cognitivo. Estas observaciones están en línea con otros datos de informar de un aumento de la conectividad funcional entre las áreas de asociación [110], así como una transición de una espacialmente localizada a una organización en red más distribuida globalmente funcional mediante el desarrollo del cerebro [42]. Diferencias relacionadas con el sexo en los niveles hormonales se han sugerido para influir en los patrones de desarrollo de blanco conectividad materia cerebral durante la adolescencia. Por ejemplo, altos niveles de la hormona luteinizante tienen efectos sobre la materia blanca de la microestructura cingulada el centro de giro / cíngulo paquete, regiones temporales medias, y las vías de fibra cuerpo calloso [111], lo que podría influir en la eficacia de las proyecciones de la materia blanca.

Tomado en conjunto, estos estudios sugieren que factores genéticos y ambientales contribuyen a la variación individual sutil en el desarrollo de la conectividad que afectan los patrones de conexión estructurales y funcionales de los centros, que a su vez tiene un impacto en la variación individual en la cognición y el comportamiento. Más allá de las variaciones individuales normales, patrones de desarrollo anormales del cerebro y la conectividad hub se han propuesto para desempeñar un papel importante en la etiología de los trastornos cerebrales del desarrollo neurológico.

Hubs de disfunción cerebral

La conectividad anatómica anormal y el funcionamiento de las regiones de cubo se ha planteado la hipótesis de relacionarse con el deterioro cognitivo y conductual en varios trastornos cerebrales neurológicos y psiquiátricos [80, 112, 113, 114] (Figura 5). Por ejemplo, los análisis de la conectividad estructural y funcional en la esquizofrenia han demostrado reducida conectividad frontal hub [38, 92, 115, 116, 117, 118] y perturbado rica formación club en pacientes [119, 120], así como sus descendientes [105] , que proporciona evidencia empírica para el de larga data dysconnectivity hipótesis de la enfermedad [116]. Estudios de desarrollo han informado intramodular alterado y conectividad intermodular de límbico conectados densamente, temporal y regiones frontales en los niños con autismo [121]. Por otra parte, la esquizofrenia de inicio infantil se ha asociado con una arquitectura modular interrumpido [122], junto con la conectividad alterada de los centros de conectores de red en multimodal corteza de asociación [123]. En el envejecimiento tardío, los análisis de red aplicada a condiciones neurodegenerativas tales como la enfermedad de Alzheimer [124, 125, 126, 127] y la demencia frontotemporal (FTD) [128] han indicado la participación de, respectivamente, parietal medial y regiones frontales en la etiología de estos trastornos, regiones que tienen alta superposición espacial con centros de la red. Estudios de redes computacionales han planteado la hipótesis, además, un papel importante para los nodos altamente conectados del cerebro en la propagación de los efectos de enfermedades neurodegenerativas dentro y entre las redes funcionales [113, 129, 130, 131, 132].


Figura 5. Hubs en la enfermedad cerebral. (A) Un mapa cortical del beta-amiloide deposición en pacientes con enfermedad de Alzheimer, lo que sugiere una fuerte participación de las regiones funcionales de cubo en la patología de la enfermedad. (B) Un funcional (izquierda) y estructural (derecha) subred de las conexiones y las regiones más fuertemente afectada en la esquizofrenia (para una revisión, ver [116]). Los nodos en particular se superponen con los ejes de conectividad estructurales y funcionales. (C) Los resultados de un estudio de la lesión de modelado de simulación de los efectos funcionales dinámicos de daños estructurales en nodos específicos de la red. Centralidad lesión (izquierda) se encontró para correlacionar significativamente con la gravedad de la alteración funcional (es decir, cambios acumulativos en la conectividad funcional de todo el cerebro). La imagen de la derecha ilustra los aumentos (azul) y disminuciones (rojo) de la conectividad funcional como resultado de daño estructural a una porción central de la corteza altamente localizada en regiones parietales mediales de la red (lesión L821). (D) Interrumpió la conectividad funcional en pacientes comatosos, con regiones rojas (superposición de la ubicación de parietal lateral y frontal hubs funcionales) indican una disminución en centralidad funcional. Regiones azules muestran una mayor centralidad funcional en los pacientes en comparación con los controles. (E) Clasificadas hallazgos de la tomografía por emisión de positrones de datos (PET) que exhibe los más altos niveles de metabolismo en regiones hub cingulada precuneus / posteriores en los controles sanos ('de control consciente ") y en pacientes con síndrome de enclaustramiento, y disminuyendo a niveles de precuneus / metabolismo cingulada posterior asociada con la disminución de los niveles de conciencia (de conciencia mínima al estado vegetativo). (A) Adaptado y reproducido a partir de [80], (B) adaptado y reproducido a partir de [116], (C) adaptado y reproducido a partir de [152], (D) adaptado y reproducido a partir de [138], (E) adaptado y reproducido a partir de [136].

Los resultados empíricos de daño focal como resultado de lesiones o lesión traumática en centros de la red cortical han mostrado efectos pronunciados sobre el funcionamiento del cerebro conductual y cognitivo. Lesiones cerebrales focales situados en regiones corticales superpuestas hubs conector funcionales, que desempeñan un papel central en la conexión de diferentes módulos funcionales, se han reportado para dar lugar a una alteración generalizada de la organización modular de la red funcional del cerebro [133]. Además, se encontró el deterioro cognitivo como resultado de lesión cerebral traumática para ser asociado con el daño de la sustancia blanca y la reducción de la integridad de las redes funcionales del cerebro después de una lesión, con efectos particularmente fuertes después del daño focal a la posterior y anterior cingulada corteza [134, 135]. El daño a las conexiones de larga distancia que están implicados en la comunicación intermodular [57, 73] se encontró que estar relacionado con trastornos de la función de la red y el resultado cognitivo [134].

Otros estudios también han informado de la interrupción de la conectividad de las regiones corticales del cubo en condiciones neurológicas que implican disminuidos o reducidos niveles de conocimiento consciente. Mediciones del metabolismo regional de las regiones corticales derivadas de la tomografía por emisión de positrones (PET) datos a través de diferentes etapas de Coma disminuciones indicadas en la actividad metabólica en las regiones precuneus parietal y posterior del cubo cingulada, con los efectos más fuertes observados en los pacientes en una vegetativo totalmente no responde estado; los efectos son menos pronunciados en los pacientes que mostraron restantes niveles de conciencia [136, 137]. Otras observaciones sugieren una posible reorganización aleatoria de centros funcionales en pacientes comatosos [138], con la persistencia de niveles de conectividad funcional se correlacionaron con los niveles de conciencia que queda en vegetativo y estados de conciencia mínimos [139, 140].


Marco conceptual: el papel de los centros de comunicación y la integración

Hubs y comunicación de red

El estado de las regiones de cubo candidato y sus conexiones como elementos de red influyentes descansa sobre su incrustación central en la red del cerebro. Esta noción implica que los centros neuronales derivan su influencia de su fuerte participación en las interacciones dinámicas debido a la señalización neuronal, es decir, de su papel central en los procesos de comunicación neuronal que se desarrollan dentro de la red estructural. El concepto de los centros cerebrales está estrechamente vinculada a una evaluación de la comunicación en red. Un objetivo importante del análisis de redes es inferir patrones de comunicación sobre la base de la topología de la red, sobre todo centrándose en el diseño de caminos cortos a través de la red y en la centralidad de nodos con respecto a estos caminos.

Siguiendo este enfoque, numerosos estudios de redes cerebrales se han centrado en los elementos de red que permiten la transmisión de señales eficiente y el flujo de información a lo largo de las rutas de comunicación cortas. Consistentemente, análisis de redes en las redes cerebrales macroscópicas ha sugerido que hubs estructurales y funcionales desempeñan un papel central en la comunicación global del cerebro [32, 57, 61, 63, 67, 141]. La relación de la organización cubo y las diferencias individuales en el rendimiento cognitivo [90, 91, 93] pone de relieve su importancia para la promoción de la comunicación y la integración neuronal en el cerebro sano. Un corolario interesante de la participación de las regiones del cubo en un número desproporcionado de vías de comunicación es que esto no sólo les hace los puntos focales de la comunicación neuronal, pero también puede hacerlos posibles neuronales 'cuellos de botella' de flujo de información, posiblemente definir los límites de capacidad en el procesamiento cognitivo [66, 142]. Límites de capacidad debido a los centros no sólo pueden establecer límites superiores para la integración neuronal, pero también pueden ser esenciales para el encadenamiento o serialización de operaciones mentales [66].

La interrupción de la comunicación cerebro también puede ser un factor importante en el cerebro y trastornos mentales. Visto desde una perspectiva de red, el cerebro y los trastornos mentales son el resultado de perturbaciones de patrones de conectividad estructural y funcional. Sobre la base de los modelos de red de la función cerebral, trastornos de regiones hub o sus interconexiones son susceptibles de causar deterioros graves debido a su papel influyente en los procesos de integración globales.

Deben mencionarse varias limitaciones de los modelos actuales de comunicación de red. En primer lugar, los modelos a gran escala actuales de comunicación en la captura cerebro humano sólo proyecciones interregionales (que representan sólo una pequeña proporción de toda la conectividad neuronal) y no incluyen redes de circuitos locales. El procesamiento local de las señales neuronales es sin duda un aspecto importante de la comunicación cerebro, ya que implica la transformación y recodificación de los mensajes neuronales en cada nodo de la red. En segundo lugar, hay que señalar que los análisis actuales basados ​​en el grafo de comunicación no pueden predecir totalmente (es decir, variable en el tiempo) patrones dinámicos de comunicación. Factores que influyen en la dinámica de la serie de tiempo neuronal como las tasas locales de disparo de neuronas y / o nivel de actividad, los insumos externos o demandas de la tarea, las relaciones de fase coherente, o la eficacia sináptica en general, no se incorporan al análisis grafo actual. Por otra parte, algunos conjuntos de nodos pueden preferentemente participar en los procesos de comunicación de los nervios, mientras que otros pueden hacerlo sólo en raras ocasiones o nunca. Estudios más sofisticados de comunicación neural se beneficiarían de formación de imágenes multimodal o la grabación conjunta de redes anatómicas y series de tiempo neuronal, idealmente a nivel de pico neuronal o actividad población. Para ser aplicable en el cerebro humano, este último se requiere el desarrollo de la totalidad de nuevos métodos para la observación no invasiva de la dinámica del cerebro. En tercer lugar, y relacionado con el punto anterior, muchos análisis basado en el grafo de comunicación de la red operan sobre la suposición de que los nodos de la red se conectan a lo largo de los más eficientes (es decir, topológicamente más cortas) caminos. Sin embargo, este supuesto implica que esos caminos son accesibles y que la longitud del trayecto es el criterio dominante para la selección de la ruta. Determinar si los caminos cortos son realmente privilegiados en este sentido requeriría estudios neurofisiológicos más detalladas que siguen rutas de red reales de flujo de información. Nos cuenta que la mayoría de estas limitaciones no son intrínsecos a modelos de redes, sino que reflejamos nuestra ignorancia y la falta de datos sobre la anatomía detallada y patrones específicos de interacciones dinámicas en redes cerebrales. Una vez que se disponga de esos datos, los modelos de redes más capaces y realistas de comunicación pueden ser diseñados y probados empíricamente.


Hubs como fuentes y sumideros

Trazado de las vías y otros métodos invasivos para medir conexiones anatómicas en las especies no humanas permiten comprender la direccionalidad de las vías neuronales y han revelado una alta incidencia de no recíprocas proyecciones interregionales [143]. Los estudios que examinan la suma total de conexiones aferentes y eferentes de las regiones de cubo en estos conjuntos de datos han sugerido que algunas regiones corticales hub mantener un equilibrio desigual de las proyecciones de entrantes y salientes. Este desequilibrio sugiere un posible papel de estas regiones corticales del cubo como la comunicación neuronal 'fuentes' y 'sumideros'. Análisis de la red macaco cerebro macroscópica identificó varias regiones de cubo, incluyendo porciones de corteza frontal y paracingular como receptores netos (es decir, fregaderos neurales), mientras que los cubos en la corteza cingulada, entorrinal, y la corteza insular han sido identificados como emisores netos (es decir, fuentes neuronales ) [144]. Esta distribución de los centros estructurales es consistente con los informes sobre la direccionalidad inferido de las interacciones funcionales en el cerebro humano, la categorización de los centros en las regiones mediales - incluyendo cingulada posterior, precuneus, y medial corteza frontal - como 'hubs impulsadas' y las regiones cerebrales centrales de las redes atencionales - incluyendo prefrontal dorsal, parietal posterior, visual, y la corteza insular - como 'hubs' de conducción [109, 145]. Una evaluación más directa de hubs como fuentes o sumideros en el cerebro humano requiere nuevas metodologías para la detección de la direccionalidad de las proyecciones anatómicas o del flujo de información dinámica in vivo.


Conexiones del Hub

La posición central de los centros cerebrales en los sistemas neuronales es subrayada aún más por la función propuesta de sus conexiones (bordes) en la señalización neuronal y la comunicación [57, 67, 69, 71]. Algunos estudios recientes han adoptado un punto de vista 'de punta centrada' en la arquitectura de la red, centrándose en la influencia de los bordes en la organización de la red en lugar de centrarse en el papel de nodos. Estos estudios han mostrado consistentemente una posición muy central de bordes relacionados hub-dentro de la red global. Por ejemplo, cantos enlace de nodos de cubo entre sí, junto con los bordes que unen los nodos concentradores para nodos que no son de cubo, comprender una gran proporción de todas las conexiones espacialmente de larga distancia, absorber una gran proporción de todas las rutas de comunicación más cortos en los sistemas neuronales, y la pantalla un alto nivel de eficacia la comunicación [54, 67, 144]. Densas conexiones entre los centros corticales pueden promover así relés cortos de comunicación, la comunicación neuronal eficiente, y la robustez de la comunicación inter-hub. Caminos cortos se han sugerido para conferir varias ventajas sobre la comunicación en los sistemas neuronales, incluyendo retardos de transmisión más cortos, reducción de la interferencia y el ruido durante la comunicación [146], y más rápido de sincronización [68]. Vías de comunicación cortos durante mucho tiempo han sido considerados como una característica definitoria de las redes 'small-world', que combinan alta agrupación con longitud de recorrido corto debido a la colocación de un pequeño número de accesos directos de larga distancia al azar entre los nodos conectados localmente. Más allá de este pequeño mundo clásico, modelos hub de conectividad cerebral sugieren que estos accesos directos no se colocan al azar dentro de la arquitectura de la red, sino más bien agregada en los nodos hub [54].

La distribución espacial generalizada de los centros y de la agregación de los accesos directos que implican bordes del cubo pueden ser vistos como un potencial columna vertebral anatómica para la comunicación global del cerebro, la centralización de la sincronización [147] y ofrecer la infraestructura anatómica de información de la ruta de flujo de manera eficiente entre las regiones del cerebro [54]. En consonancia con esta idea, los estudios que combinan las estimaciones de conectividad estructural macroscópica derivada de imágenes de difusión y las estimaciones de la conectividad funcional derivado de grabaciones fMRI en estado de reposo han revelado una desproporcionadamente fuerte presencia de conexiones hub entre las vías de materia blanca que unen diferentes módulos estructurales y en estado de reposo funcional redes, lo que sugiere un papel importante de los bordes del cubo en la comunicación neuronal intermodular [57, 67]. Estudios computacionales subrayan además un papel central de los bordes del cubo en la comunicación global, que muestra un impacto desproporcionado de daños en los bordes del cubo sobre la estructura y la dinámica de la modularidad funcionales del sistema [64, 68, 119].

Hubs y la integración intermodal

La comunicación neuronal que ocurre dentro de la red estructural es un requisito previo esencial para la función cerebral. Con nodos de cubo y sus conexiones atraer y difusión de un gran número de todas las rutas de comunicación neuronales, concentradores cerebrales y sus conexiones, como un sistema, se han planteado la hipótesis como una estructura convergente para la integración de la información, entre sí formando un sustrato anatómico putativo para un funcional ' espacio de trabajo global ". Esta área de trabajo es la hipótesis como una arquitectura cognitiva en la que segregó sistemas funcionales pueden compartir e integrar la información por medio de interacciones neuronales, con un papel importante de las vías que enlazan las regiones central y constituyen un espacio de trabajo global. En estrecha relación con la noción de espacio de trabajo global, la "hipótesis central conectivo '[66] sugiere que las regiones hub interconectadas que son oferta topológicamente central de un sustrato importante para la integración cognitiva, no sólo para la radiodifusión y el acoplamiento dinámico de las señales neuronales, sino también por ofrecer una 'escenario de cooperación dinámica y la competencia "entre la información de otra forma segregada [148].

La base de la red del espacio de trabajo global o núcleo conectivo puede corresponder a las proyecciones de reticulación hubs en una rica red coherente club que abarca varias modalidades. En apoyo de esta idea, los análisis cross-modal de la conectividad cerebral humana estructural y funcional han señalado la fuerte presencia de las regiones del cubo a través de áreas de la corteza en la que varios dominios funcionales se superponen [67, 79, 149], que forman "zonas de confluencia" o "convergencia zonas 'de interacciones neuronales [57, 107]. Red analiza el empleo de algoritmos de detección de la comunidad nodo superpuestas, que permiten a los nodos que participan en varios módulos, revelan una fuerte participación de los nodos hub de conectividad intermodular [67], en consonancia con la idea de que hub bordes de reticulación múltiples dominios funcionales [57, 81, 82] . Una red de conexiones de concentrador densos, intermodulares, y recíprocas de puente diferentes dominios funcionales y que abarcan las regiones del cerebro funcionalmente heterogéneos puede así formar un sustrato anatómico prometedora para la integración neuronal y la competencia en el cerebro.

Hubs en modelos computacionales de la dinámica del cerebro

La disponibilidad de mapas de conectividad estructurales en conjunción con modelos biofísicos que simulan el comportamiento dinámico de las poblaciones neuronales ha permitido la construcción de modelos computacionales de las redes cerebrales a gran escala. Varios de estos modelos han sugerido que los centros juegan un papel clave para permitir que los altos niveles de diversidad funcional y la sincronización funcional entre regiones corticales. Por ejemplo, un modelo de la actividad neuronal espontánea incorporación de una regla recableado dependiente de la actividad basada en sincronía mostró que los nodos hub altamente centrales involucrados en la dinámica más variables o ruidosos, lo que resulta en una mayor probabilidad de cableado estructural [150]. Un modelo computacional de la sincronización en la corteza gato ha demostrado que muy conectado nodos concentrador de red y sus conexiones dominan la organización dinámica del sistema, jugando un papel clave en la transición de desincronizado con la dinámica sincronizados central [68]. Otros modelos neuronales estimar los niveles teóricos de configuraciones funcionales a través de numerosas redes de juguetes han mostrado la aparición de la diversidad funcional más alto en las redes con una arquitectura hub libre de escala en comparación con otros tipos de arquitectura de red (por ejemplo, redes de azar, regular o de mundo pequeño ) [147, 151]. Por último, los modelos de red predicen lesiones a los nodos de cubo y los bordes del cubo a ser una de las más perjudiciales para la organización general de la red y el funcionamiento, los efectos que parecen solaparse con las observaciones empíricas de daño cerebral focal (ver sección sobre centros de conexiones en la disfunción cerebral y la Figura 5). Por otra parte, la vulnerabilidad computacional análisis, modelización de los efectos de las lesiones anatómicas en la estructura general de la red y la dinámica de los nervios, han mostrado efectos desproporcionados de daño a los centros corticales y conexiones pivotes en la estructura de la modularidad [57] y la dinámica funcional de la red [152, 153] . Conjuntamente, estas simulaciones computacionales indican concentradores de red como lugares de alta variabilidad y plasticidad en conjunción con un papel importante en el mantenimiento de la sincronización cortical, la estructura modularidad, y la dinámica funcional de la red a nivel de sistema.


Observaciones finales

Las operaciones cognitivas complejas emergen de la actividad coordinada de grandes poblaciones neuronales en las redes cerebrales distribuidas. La teoría de redes identifica varias regiones hub altamente conectados y altamente centrales y predice que estos centros de la red y sus conexiones desempeñan un papel clave en la integración de la información y en la señalización neuronal eficiente y la comunicación en el cerebro. Las herramientas de análisis de red aplicados a los datos conectoma humanos estructurales y funcionales proporcionan un marco computacional basada en datos para la detección de centros de la red del cerebro y para el examen de su variación entre los individuos, su desarrollo a través del tiempo, y su papel en los trastornos cerebrales. Siguen siendo numerosas preguntas que tenga que abordar (Figura 3). Es importante destacar que el futuro progreso conceptual dependerá de cerca de diálogo entre los modelos de redes teóricas y estudios empíricos de la función de red. Por ejemplo, la colocación central de nodos y aristas del cubo en los modelos de red hace predicciones específicas sobre el sustrato neural de la función cerebral integradora. Estas predicciones pueden ser probadas mediante la manipulación (estimular o silenciar) elementos de red específicos a través de modernas técnicas de intervención, seguido por la observación de las consecuencias funcionales. Otra vía importante puede incluir el desarrollo de modelos computacionales neurobiológicamente realistas para simular la dinámica de sistemas neuronales, lo que permitirá un más sistemático y profundo examen de la supuesta función de los centros cerebrales en la comunicación y la integración neuronal. Los enfoques de red a la neurociencia están actualmente acelerando a un ritmo rápido, impulsado por la disponibilidad de "grandes datos" [154], una infraestructura computacional en expansión, y la formación de consorcios de investigación a gran escala e iniciativas enfocadas en la conectividad de mapeo cerebral. A medida que estos acontecimientos se desarrollan, parece cierto que el estudio de los centros de la red cerebral seguirá siendo un tema permanente en la búsqueda para entender mejor el complejo funcionamiento del cerebro humano.