sábado, 27 de abril de 2019

Nueva ley de potencia explica mejor diversos eventos

Los investigadores encuentran una ley de potencia mejor que predice terremotos, vasos sanguíneos, cuentas bancarias

Phys.org



Debido a que las venas se ramifican en divisiones aproximadamente proporcionales, también se consideran un fractal. Crédito: Imagen de cortesía / Mitchell Newberry.

Los terremotos gigantes y la riqueza extrema pueden parecer no tener mucho en común, pero la frecuencia con la que el "Big One" llegará a San Francisco y la frecuencia con la que alguien ganará tanto dinero como Bill Gates puede predecirse con una medición estadística llamada exponente de la ley de potencia.

Durante el último siglo, los investigadores han utilizado lo que se llama una ley de potencia para predecir ciertos tipos de eventos, incluida la frecuencia con que se producen los terremotos en ciertos puntos de la escala de Richter. Pero un investigador de la Universidad de Michigan notó que esta ley de potencia no se ajusta a todas las circunstancias.

Mitchell Newberry, un compañero y profesor asistente de Michigan en el Centro para el Estudio de Sistemas Complejos de la UM, sugiere un ajuste a la ley de energía que explicaría los eventos que aumentan o disminuyen en proporciones fijas, por ejemplo, cuando un gerente hace aproximadamente el 20 por ciento. más que su empleado.

Estos ajustes afectan la forma de estimar las probabilidades de terremotos, la cantidad de capilares en el cuerpo humano y el tamaño de las megaciudades y las llamaradas solares. Y pueden revisar cuándo esperar el próximo Big One.

Cuando los científicos trazan algo como la probabilidad de riqueza extrema en un gráfico, la curva es una línea suave. Eso es porque las personas pueden tener cualquier cantidad de dinero en sus cuentas bancarias.

"La suavidad de esta curva significa que cualquier valor es posible", dijo Newberry. "Podría ganar un centavo más fácilmente que un centavo menos".

Ese no es exactamente el caso de eventos como los terremotos, debido a la forma en que se registran en la escala de Richter. La magnitud de Richter de los terremotos aumenta o disminuye en incrementos de 0.1, exponencialmente. Un terremoto de magnitud 3.1 es 1.26 veces más poderoso que los terremotos de magnitud 3.0, por lo que no todos los valores son posibles en la escala. La escala de Richter es un ejemplo de un concepto llamado "auto-similitud" o cuando un evento o cosa está hecho de copias proporcionalmente más pequeñas de sí mismo.

Puede ver la auto-similitud en la naturaleza como la ramificación de las venas en una hoja, o en la geometría como triángulos encajados dentro de triángulos más grandes de la misma forma, llamado triángulo de Sierpinski. Entonces, para explicar los eventos que cambian en proporciones exactas, Newberry y su coautor, Van Savage, de la Universidad de California en Los Ángeles, crearon la ley de potencia discreta.


La curva de Koch se repite infinitamente, mostrando auto-semejanza. Crédito: usuario de Wikimedia Leofun01

En estas ecuaciones de ley de potencia, el exponente en la ecuación es la variable que los científicos están resolviendo. En los terremotos, ese exponente, llamado el valor de Gutenberg-Richter b, se midió por primera vez en 1944 e indica con qué frecuencia es probable que ocurra un terremoto de cierta intensidad. La ley de energía discreta de Newberry produjo una corrección del 11.7% sobre las estimaciones basadas en la ley de energía continua, lo que hace que el exponente se acerque más a la frecuencia histórica de los grandes terremotos. Incluso una corrección del 5% se traduce en una diferencia de más de dos veces en cuándo esperar el próximo terremoto gigante.

"Durante 100 años, las personas han estado hablando de aproximadamente un tipo de distribución de la ley de energía. Es la distribución de la ley de poder de la riqueza y los terremotos", dijo Newberry. "Solo ahora, estamos documentando estas escalas discretas. En lugar de una curva suave, nuestra ley de energía parece una escalera infinita".

Newberry notó la falla en la ley de poder continuo en su estudio de la física del sistema circulatorio. El sistema circulatorio comienza con un gran vaso sanguíneo: la aorta. A medida que la aorta se divide en diferentes ramas (las arterias carótida y subclavia), cada nueva rama disminuye de diámetro en aproximadamente dos tercios.

Estaba utilizando la ley de energía continua para estimar los tamaños de los vasos sanguíneos a medida que continúan ramificándose. Pero la ley de poder producía tamaños de vasos sanguíneos que no podían ocurrir. Indicó que un vaso sanguíneo podría ser solo un poco más pequeño que el tronco desde el cual se ramificó en lugar de alrededor de dos tercios del tamaño de ese tronco.

"Al utilizar la ley de energía continua, solo recibíamos respuestas que sabíamos que estaban mal", dijo Newberry. "Al depurar lo que falló, descubrimos que esta distribución supone que cada tamaño de vaso sanguíneo es igualmente plausible. Sabemos que para la vasculatura real, ese no es el caso".

Así que Newberry hizo ingeniería inversa de la ley de potencia. Al observar los vasos sanguíneos, Newberry podría deducir el exponente de la ley de potencia a partir de dos constantes: cuántas ramas en cada unión (dos) y cuánto más pequeña es cada rama en relación con el tronco. Al medir el tamaño de los vasos en cada división, Newberry pudo resolver la distribución de los vasos sanguíneos.

"Hay un punto intermedio entre una ley de energía continua y la ley de energía discreta", dijo Newberry. "En la ley de poder discreta, todo se presenta en proporciones perfectamente rígidas desde la escala más alta hasta el infinitamente pequeño. En la ley de poder continuo, todo se distribuye de manera perfectamente aleatoria. Casi todo lo que se asemeja en realidad es una mezcla de estos dos . "

No hay comentarios:

Publicar un comentario