viernes, 18 de noviembre de 2016

La cooperación da poder a los débiles

La competencia entre redes pone de manifiesto el poder de los débiles

Jaime Iranzo, Javier M. Buldú y Jacobo Aguirre
Nature Communications 7, Número del artículo: 13273 (2016)
Doi: 10.1038/ncomms13273

Resumen
Las conexiones no previsibles entre sistemas de red reales han llamado recientemente a un examen de fenómenos de percolación, difusión o sincronización en redes multicapa. Aquí utilizamos la teoría de redes y la teoría de juegos para explorar las interacciones en redes de redes y modelarlas como un juego para ganar importancia. Proponemos un punto de vista donde las redes eligen las estrategias de conexión, en contraste con los enfoques clásicos donde los nodos son los jugadores activos. Específicamente, investigamos cómo la creación de caminos entre redes conduce a diferentes equilibrios de Nash que determinan sus propiedades estructurales y dinámicas. En una amplia variedad de casos, la selección de conexiones adecuadas conduce a una solución cooperativa que permite a las redes débiles superar al oponente más fuerte. De manera contraria, cada red débil puede inducir una transición global a dicha configuración cooperativa independientemente de las acciones de la red más fuerte. Este poder de los débiles revela un dominio crítico de los marginados en el destino de las redes de redes.


Introducción

Los sistemas sociales, biológicos, físicos y tecnológicos están compuestos por una diversidad de agentes interactivos, lo que hace que la ciencia de la red, una comprensión de la física estadística de la teoría gráfica, sea una auténtica herramienta para investigar su estructura y dinámica1,2,3. En el marco de las redes sociales4, se ha demostrado que la topología de las interacciones entre individuos es crucial, por ejemplo, en la desaparición del umbral crítico en las epidemias5,6 o en la propagación eficiente y rápida de la innovación7. De manera similar, la topología de una red misma puede ser influenciada por los procesos dinámicos que ocurren en ella, dando lugar a mecanismos adaptativos que rigen la evolución de la estructura de las redes sociales8.

El surgimiento de la cooperación, defección o altruismo puede ser investigado vinculando la teoría de los juegos a la ciencia de la red9,10,11,12. De este modo, la heterogeneidad intrínseca de las redes sociales, la mayoría de las cuales muestran distribuciones de poder-ley en el número de conexiones1, se ha relacionado en muchos casos con el surgimiento de la cooperación, contrariamente a lo que se observa en poblaciones homogéneas13. Además, también se ha demostrado que los individuos altamente conectados son más propensos a colaborar que los pocos conectados14. Bajo este marco, la comprensión de los juegos evolutivos se benefició en gran medida de las herramientas metodológicas de la ciencia en red11. Aunque la atención se centró inicialmente en la interacción entre las estrategias de los nodos y la estructura de la red (única) subyacente15, más recientemente, las reglas coevolutivas también se han relacionado con la aparición de estructuras de interdependencia16 y de múltiples capas17. Sin embargo, ¿qué pasa si nos preocupan los intereses de una red en su conjunto en lugar de sus nodos? ¿Tiene sentido considerar las redes que compiten o colaboran con otras redes? La fructífera literatura reciente sobre redes de redes, o en un contexto más general sobre redes multicapa, hace que estas dos preguntas sean oportunas y de gran relevancia18,19. Una diversidad de procesos dinámicos como la percolación20, la difusión21 o la sincronización22 han sido reinterpretados recientemente suponiendo que las redes reales interactúan inevitablemente con otras redes, un contacto que puede ser beneficioso o perjudicial para cada una de las redes que pertenecen al conjunto23.

Aquí investigamos cómo m> 2 redes compiten o cooperan para lograr un aumento relativo de importancia medido como centralidad de vectores propios, que maximiza su resultado en una variedad de procesos dinámicos. En nuestra competencia, las redes pueden variar la forma en que interactúan con otras redes, evolucionando en el tiempo hasta alcanzar una situación estable en la que todas las redes se niegan a modificar su estrategia, ya que cualquier cambio conduciría a un peor resultado. Es importante destacar que una estrategia de conexión óptima a priori para una red dada puede no ser alcanzable debido a las acciones de las redes competidoras, lo que convierte el análisis del resultado final de las redes en un estudio de los equilibrios de Nash24 en una red de redes. Con este objetivo definimos una metodología para analizar la competencia entre redes de cualquier tamaño o topología, demostrando que pueden coexistir varios equilibrios de Nash, con algunos de ellos beneficiando a las redes más fuertes y otros beneficiando a los más débiles.

En particular, se informa de la existencia de un amplio régimen de los parámetros del sistema en el que cada red débil puede inducir al resto a cooperar, a escapar de un equilibrio de Nash perjudicial, asumiendo la situación final de toda la red de redes. Paradójicamente, la red fuerte no puede revertir este fenómeno. Esta asimetría contra-intuitiva que promueve la cooperación entre redes débiles es independiente de la estructura de la red o de las reglas de la competencia y podría aplicarse a un extenso número de sistemas reales.


Resultados

Definición de las reglas de la competencia

Como regla general, consideramos que los nodos pertenecientes a una red aceptarán una estrategia común, que puede justificarse en términos de un beneficio común o la existencia de una imposición dentro de una organización jerárquica (véase la Nota Suplementaria 1 para más detalles). El siguiente ejemplo, basado en redes reales, ilustra cómo diferentes estrategias pueden mejorar el resultado de una red. La interacción entre los miembros de las comunidades rurales del sur de la India se investigó recientemente mediante una serie de encuestas en el marco de un programa de microfinanzas25,26. A partir de esos conjuntos de datos (disponibles en la versión en línea de la referencia 25), construimos las redes de préstamos dentro de tres de esos pueblos (véase la figura 1a), creando un vínculo entre los individuos i y j si estaban dispuestos a prestar o pedir prestado Unos de otros una cierta cantidad de dinero. Las redes de préstamos locales construidas como se explicó anteriormente proporcionan mucha información sobre la capacidad de recuperación financiera de una región. Si las autoridades locales de una aldea promovían las conexiones con otras regiones -por ejemplo, mediante la financiación de eventos sociales- se mejoraría su red de préstamos y la aldea estaría más preparada para hacer frente a riesgos naturales o financieros inesperados (véanse las refs 27, 28 , 29, 30, 31 y Nota complementaria 1). Sin embargo, ¿qué aldea es la mejor para conectarse si existe más de una opción? Además, lo que es más importante, ¿qué aldea se beneficiaría más de la creación de nuevos canales financieros entre ellos?


Figura 1: Competencia por la centralidad de las redes de préstamos.

Las aldeas A (verde), B (azul) y C (rojo) se nombran de acuerdo con el valor propio más grande de sus redes de préstamos, de manera que λA> λB> ΛC (véase la Nota Suplementaria 1 para detalles sobre la construcción de las redes). La creación de conexiones entre aldeas conduciría a una red de redes T, cuya centralidad se distribuye entre las aldeas. En b, c, mostramos la centralidad retenida en cada aldea (red) dependiendo de las diferentes estrategias de conexión. El radio de cada círculo es proporcional a la centralidad acumulada por cada red. Las resistencias de las redes son λA = 4,27, λB = 4,05 y λC = 3,38. Cuando se permite una conexión entre aldeas (l = 1), coexisten dos Equilibrios de Nash: en b, las redes B y C se conectan a A (CA = 0,55, CB = 0,35 y CC = 0,10), pero su mejor estrategia se muestra en c , Es decir, crear enlaces entre ellos, obligando a la red A a unirse a ellos (CA = 0,32, CB = 0,49 y CC = 0,19). En resumen, el resultado final del concurso depende en gran medida de la solución alcanzada.


Para abordar estas preguntas en un marco general consideramos m redes de nodos Ni respectivamente, donde i = A, B, C, ... Las matrices de adyacencia Gi asociadas a cada red i contienen la información completa sobre las conexiones entre sus nodos Es, la topología específica de las redes). El mayor autovalor λi de Gi es un indicador de la intensidad de la red, como se explica en la referencia. 32; Por lo tanto, podemos ordenarlos de manera que λA> λB≥ ... ≥λm. Hacemos uso de la centralidad del vector propio para determinar la importancia adquirida por cada nodo, que se obtiene directamente del vector propio u1 asociado al valor propio más alto λ1 de la matriz de adyacencia (ver referencia 3, Métodos y Nota complementaria 2).

En nuestro juego, cada competidor (es decir, la red) hace uso de hasta l enlaces no dirigidos para conectarse con cualquiera de las otras redes. Los nodos conector son aquellos con la centralidad más grande (ver Métodos). La negativa a conectarse es una estrategia aceptada. Por lo tanto, hay  estrategias por competidor y (Sm,l)m  posibles combinaciones de acciones. El objetivo de cada competidor es maximizar su propia centralidad del autovector, calculada como la importancia total (o centralidad) Ci acumulada por todos sus nodos



Donde j son los nodos que pertenecen a la red i y uT es el autovector asociado con el valor propio más grande λT de la matriz de adyacencia de la red de redes T, que contiene todos los nodos NT=∑i Ni.. Es de notar que nos enfrentamos a un juego de suma cero (Σi Ci = 1) y el sistema conectado T consta de m redes interconectadas a través de un máximo de m × l enlaces conector. Además, dichos enlaces conectores influirán en Ci de cada red, pero no en su fuerza λi, que se mide cuando la red i está aislada del resto y es independiente de la competencia.

Como suponemos que las redes son capaces de modificar sus enlaces conector con el objetivo de adquirir la mayor centralidad posible Ci dentro de la red de redes T, la configuración final del sistema viene dada por un equilibrio de Nash. Un equilibrio de Nash es la solución de un juego no cooperativo en el que participan dos o más jugadores, en el que se supone que cada competidor conoce las estrategias de equilibrio de los otros jugadores y ningún competidor tiene nada que ganar cambiando únicamente su propia estrategia24,33. Desde esta perspectiva general, independientemente de las reglas particulares del concurso, el proceso de competencia termina cuando se alcanza un equilibrio de Nash, siendo Ci el pago final de cada red competidora.

La Figura 1b, c muestra la competencia por la centralidad en nuestra "historia de tres aldeas". Calculamos el autovalor más grande asociado con las redes de préstamos dentro de cada aldea y obtenemos el ranking en la fuerza: λA> λB> λC. La terminología utilizada para indicar cómo una red (es decir, una aldea) i1 decide conectarse a una red i2 es la siguiente: i1 (0) significa red i1 que se niega a conectar, i1i2 significa i1 conectando a la red i2 y i1i2  significa i1 conectando a la red i2 y i2 conectando a la red i1. La flecha → indica qué red decide crear el enlace del conector, pero todos los enlaces no están dirigidos (es decir, bidireccionales).

Al permitir que las aldeas se conecten a través de un enlace (l = 1), obtenemos dos posibles equilibrios de Nash. En uno de ellos, las aldeas débiles establecen conexiones con la aldea fuerte, {A (0), B → A, C → A}, que beneficia claramente a esta última (Fig. 1b). Sin embargo, el equilibrio alternativo {A → B, B↔C} permite a las aldeas débiles superar a su competidor más fuerte conectándose entre sí. En este escenario, la red fuerte debe conectarse a B para retener parte de la centralidad de todo el sistema (figura 1c).

Es importante destacar que la selección de estrategias de conexión adecuadas va más allá de la competencia por la centralidad. En las redes profesionales, por ejemplo, el crecimiento del conocimiento de un individuo puede ser modelado para ser proporcional al conocimiento de sus conocidos34, lo que conduce a una distribución final del conocimiento que es dada por el primer autovector uT de la matriz de adyacencia. Se ha traducido a un caso en el que grupos independientes de profesionales o investigadores pueden crear conexiones entre ellos, esto indicaría que la estrategia mostrada en la Fig. 1c mejoraría no sólo la importancia de un grupo de profesionales, sino la cantidad relativa de conocimientos adquiridos por el grupo más débil en comparación con el más fuerte (véase la nota complementaria 1 para varios ejemplos del mundo real que tratan de redes sociales, tecnológicas y biológicas). Además, una amplia variedad de sistemas se describen mediante matrices de adyacencia ponderada-matrices de transición que incluyen las especificidades del proceso dinámico subyacente-cuyo vector uT está relacionado con el estado de equilibrio del sistema32. La dinámica evolutiva de la replicación-mutación35, los procesos de difusión21 o la propagación de la enfermedad36 son sólo algunos ejemplos donde la metodología aquí presentada puede aplicarse sin pérdida de generalidad (ver Métodos).


Competencia y cooperación para superar las más fuertes

La figura 2 muestra una descripción numérica completa de la competencia entre m = 3 redes genéricas libres de escala A, B y C de los valores propios más grandes λA>λB>λC. Por razones de claridad, sólo se permite un enlace de conector por red (l = 1) y, por lo tanto, cada competidor tiene m diferentes estrategias de conexión (es decir, conectarse a cualquiera de las otras redes m-1 o negarse a conectarse). En el caso de tres redes, son posibles 27 combinaciones de estrategias para cada realización - elección de redes - entre las que sólo se toman como soluciones al concurso las que verifican las condiciones para ser equilibrios de Nash. La figura 1b, c muestra que más de una solución final puede coexistir, lo que plantea dos preguntas relevantes: (i) ¿es la coexistencia de soluciones un fenómeno general? Y si este es el caso, (ii) ¿el resultado final de cada jugador varía sustancialmente dependiendo de la solución alcanzada?

Figura 2: Competencia por la centralidad entre 3 redes.

Cada competidor utiliza tanto como l = 1 enlace para conectarse con el resto de las redes. Modificamos el tamaño y / o el grado medio de la red A (es decir, el competidor más fuerte) para incrementar su resistencia de λA = λB a λA»λB↔C, donde B↔C es la red resultante de conectar B y C A través de un enlace doble. El eje x se ha reescalado para permitir comparaciones entre diferentes realizaciones. Para cada elección de B y C, el sistema se resuelve para 20 series de A y los resultados son un promedio de más de 500 conjuntos de A, B y C. (a) Número de equilibrios de Nash coexistentes por realización. El radio de cada círculo es proporcional a la fracción de realizaciones (no se encontraron casos con más de dos soluciones coexistentes). (B) Presencia relativa de diferentes configuraciones en el conjunto de soluciones, promediada en todas las realizaciones: (i) Equilibrio X0 = {A → B, B↔C} (amarillo), (ii) equilibrio X∞ = {A (0) , B → A, C → A} (azul) y (iii) otros equilibrios (gris). En algunas realizaciones excepcionales, A → B es sustituido por A → C en X0. C) Centralidad de las redes A (círculo), B (diamante) y C (triángulo) para una elección particular de B y C (λB = 5,25 y λC = 5,2). Los resultados se muestran para las soluciones X0 y X∞ (código de color como en b). (D) Variabilidad de centralidad relativa ΔC entre diferentes equilibrios de Nash. Los puntos de datos (barras de error) corresponden a promedios (s.d.) sobre todas las realizaciones cuyo λA se encuentra en el correspondiente intervalo del eje X. Símbolos de red como en c.

La Figura 2a, b pregunta de dirección (i) y muestran los perfiles de solución a medida que aumenta la resistencia de la red A (es decir, λA). La figura 2a muestra un escenario que consideramos general: la coexistencia de equilibrios de Nash, entre los cuales dos de ellos, llamados X0 y X∞, son especialmente relevantes (véase la figura 2b):





Por otro lado, la Fig. 2c muestra la centralidad de los dos equilibrios de Nash existentes a medida que aumenta la fuerza de A para una elección particular de B y C. Para una amplia gama de valores de A, las centralidades alcanzadas por cada jugador dependen fuertemente de la solución específica del concurso , Que responde a la pregunta (ii) y subraya la importancia de elegir una estrategia de conexión adecuada.

Para comprobar la relevancia de este resultado, en la Fig. 2d se muestra la variabilidad de centralidad relativa (ΔC), una medida de cuánto mejora el resultado de un jugador al llegar a su solución óptima:



Donde los máximos y mínimos se calculan entre todos los equilibrios de Nash coexistentes. El ΔCi de cada jugador i toma valores que van desde cero (si todas las soluciones conducen a la misma centralidad) hasta el infinito (si la solución del peor caso conduce a la centralidad cero para ese jugador). Las tres redes muestran valores del orden de ΔC ~ 0,8, lo que significa que la centralidad final de cada red competidora puede variar hasta casi dos veces dependiendo de la solución alcanzada.

A la vista de todos, podemos identificar diferentes regímenes de competencia dependiendo de la fuerza relativa entre la fuerte red A y el resto de competidores. Para fuerzas muy grandes de A, es decir, cuando λA> λB↔C, el único equilibrio de Nash existente corresponde a X∞: las redes pequeñas evitan la cooperación mutua y tienden a conectarse a la más grande, que domina la contienda. Una transición crítica ocurre en λA = λB↔C por debajo de la cual X∞ y X0 coexisten de manera biestable. Curiosamente, dentro de esta región, la cooperación entre las redes débiles siempre conduce a su mejor resultado. Finalmente, una transición más suave ocurre alrededor de λA~λB↔C, siendo B↔C la red resultante de conectar B y C a través de un solo enlace: cuando la fuerza de A se aproxima a la de B, la cooperación mutua entre B y C se hace dominante y equilibrio X∞ ya no es posible. Al mismo tiempo, pueden aparecer otros equilibrios de Nash (región gris de la figura 2b). Véanse las notas complementarias 2 y 3 para un tratamiento analítico completo de este fenómeno.

Las redes débiles pueden inducir la migración entre equilibrios

Como se explicó, en un equilibrio de Nash cada competidor que puede cambiar la estrategia disminuiría su centralidad. Sin embargo, como hay equilibrios de Nash coexistentes, puede valer la pena asumir una pérdida temporal de centralidad si la situación final conduce a una mejora en el resultado. De esta manera, se estudia la migración potencial entre los equilibrios X0 y X∞ en el régimen en el que coexisten (λA <λB↔C). En la Fig. 3a muestran que la migración de X∞ a X0 puede ser provocada por la red más débil C individualmente, mientras que la Fig. 3b muestra que la red fuerte no puede activar el sistema para migrar de X0 a X∞. Como consecuencia, cuando múltiples redes compiten por la centralidad, una red débil por sí misma puede escapar de un equilibrio perjudicial y empujar a todo el sistema hacia un sistema mucho más beneficioso con el costo de un transitorio de un paso durante el cual se disminuye su centralidad. Por el contrario, esta estrategia de migración no es accesible a la red fuerte, dando lugar a una asimetría natural en el contexto de las redes de redes que beneficia el resultado final de las redes débiles y les proporciona una flexibilidad no permitida a los competidores más fuertes .


Figura 3: Migración entre equilibrios de Nash.

En este ejemplo, las redes se generan con el modelo de Barabási-Albert (λA = 4.07, λB = 3.95 y λC = 3.63, dando λA <λB↔C = 4.21). Para seguir cómo las estrategias de conexión influyen en la distribución de la centralidad, el radio de cada círculo es proporcional a la centralidad acumulada por cada red. El equilibrio X∞ conduce a CA = 0,65, CB = 0,21 y CC = 0,14, mientras que X0 conduce a CA = 0,28, CB = 0,45 y CC = 0,27. (A) La red más débil C provoca la migración de X∞ a X0, para mejorar drásticamente su centralidad (el mismo razonamiento podría aplicarse a B). Paso 1: la red C se desconecta de la red fuerte A y se conecta a la red débil B. Paso 2: A no cambia sus conexiones porque cualquier variación sería perjudicial, pero B mejora su centralidad separándose de A y conectándose a C. Paso 3 : A se hace aislado y CA = 0 (porque λA <λB↔C). Está obligado a conectarse a B y el sistema alcanza el equilibrio de Nash X0. (B) La red fuerte A no puede provocar la migración del equilibrio X0 a X∞ y está obligada a permanecer en un estado final desventajoso. Si A se niega a conectarse a cualquier red débil (Paso b.1) o se conecta a C en su lugar (Paso b.2), B y C perderían centralidad si rompieran su conexión mutua y consecuentemente se negaran a cambiar sus conexiones. A se ve obligado a conectarse de nuevo a B retornando a la estrategia X0.


Consecuencias generales en la red de redes

El trabajo numérico extensivo produce que la fuerza λT de la red de redes T siguiente al equilibrio X0 es siempre mayor que la de la solución X∞ (es decir, λT (X0)> λT (X∞), véase la Nota Suplementaria 4) . Es importante destacar que un aumento de λT está relacionado con un crecimiento mejorado en el equilibrio para una amplia gama de procesos dinámicos35, una reducción de la fuerza crítica de acoplamiento para la aparición de sincronización (como ~1 / λT) 37 o la aparición de un componente gigante en Fenómenos de percolación38. Por lo tanto, la tendencia natural hacia la cooperación entre redes débiles presentada en este trabajo también mejora la eficiencia y el crecimiento de todo el sistema. Volviendo al ejemplo de las tres aldeas, el análisis de los equilibrios de Nash revela que el equilibrio X0 (Fig. 1c) conduce a un λT mayor que X∞ (Fig. 1b, es decir, λT(X0)=4.78>λT(X)=4.57, para l = 1). Al final, esta es una buena noticia para todos los pueblos, ya que un λT más alto realza la fuerza de todo el conjunto39. Cabe señalar que estos resultados pueden utilizarse no sólo para la descripción, sino más importante para la prescripción de cómo las redes pueden maximizar sus resultados al interactuar con otras redes y cómo la aparición de nuevas interacciones entre redes aisladas influye en las propiedades estructurales y dinámicas del real Sistemas.

Por último, la migración entre los equilibrios descritos anteriormente podría tener una contraparte sugestiva en una amplia variedad de situaciones en las que una relación basada en la subyugación a un poderoso líder naturalmente emigró hacia un modelo nuevo y más productivo basado en la cooperación (véanse las referencias 40, 41 y Nota Complementaria 4 para un ejemplo histórico ilustrativo).

Discusión

En resumen, proponemos combinar la ciencia de redes y la teoría de juegos para analizar la elección de estrategias de interconexión en un juego de suma cero donde los jugadores no son agentes únicos sino redes. La creación de caminos entre las redes que interactúan conduce a diferentes equilibrios de Nash, algunos de los cuales benefician al competidor fuerte y algunos de ellos refuerzan a los menos favorecidos. Contrarrestantemente, mostramos que las transiciones entre los equilibrios de Nash coexistentes se restringen a los competidores más débiles, que en la práctica gobiernan el concurso, mientras que la red más fuerte es incapaz de cambiar el status quo en su propio interés.

Es importante destacar que la mayoría de los supuestos de nuestro modelo pueden modificarse para describir escenarios más realistas sin causar cambios cualitativos (véase la Nota Complementaria 5 para más detalles). Cuando se permite a cada jugador conectarse al resto de redes a través de más de un enlace (es decir, l> 1), el número de combinaciones de estrategias crece como lm(m−1) para m fijo. Sin embargo, el número de soluciones coexistentes y la fenomenología observada son totalmente equivalentes a los obtenidos para l = 1. Lo mismo ocurre con las topologías de red aleatorias (Erdös-Rényi), las redes de cualquier tamaño y las redes con diferentes capacidades, es decir, cuando ciertas redes pueden conectarse a través de un mayor número de enlaces de conector (o incluso más enlaces ponderados) que los demás competidores.

Además, extender el análisis a equilibrios mixtos de Nash, donde se permite cualquier distribución no entera de los enlaces de conector, no altera los resultados y proporciona una naturaleza probabilística al juego que amplía su aplicabilidad. Cuando se consideran más de 3 redes en el concurso, surgen nuevos tipos de equilibrios de Nash, pero de nuevo observamos la existencia de regiones amplias del espacio de parámetros donde redes débiles gobiernan toda la red de redes. Además, se han analizado diferentes definiciones de las rentabilidades basadas en la centralidad -como la centralidad de la interconexidad o cercanía- y sólo aquellas estrechamente relacionadas con la centralidad de los vectores propios llevan a una fenomenología rica en el número de equilibrios de Nash y el efecto de tales equilibrios en la Ganancias de los competidores.

Por último, en algunas redes sociales y económicas, las estrategias de conexión pueden verse influidas por las motivaciones individuales de los nodos conector, lo que da lugar a un posible conflicto con los intereses colectivos. Como primer paso para entender estos complejos escenarios, introdujimos una recompensa después de la referencia. 42, que incluye contribuciones individuales y colectivas (véase la nota complementaria 6): concluimos que la cooperación entre las redes débiles y su control del juego es un resultado frecuente que puede aparecer a niveles relativamente pequeños (o incluso cero) de incentivos colectivos, Aunque los detalles cuantitativos dependen significativamente de la topología de las redes.

La robustez de la fenomenología aquí presentada, sumada a su potencial aplicabilidad a casos reales, hace que este "poder de los débiles" sea un hecho valioso a considerar en el futuro modelado de procesos tecnológicos, biológicos o sociológicos en redes.


Métodos

Medir la importancia de los nodos y las redes

Utilizamos la centralidad de vectores propios xk para cuantificar la importancia de un nodo k en una red, que se puede obtener como un proceso iterativo que suma las centralidades de todos los vecinos de k:



Donde λ es una constante, xk es la centralidad de vectores propios del nodo k y Gkj son los componentes de la matriz de adyacencia, que podría ser tanto binaria como ponderada43. En la ecuación matricial (5) se lee λx=Gx para que x pueda expresarse como una combinación lineal de los vectores propios uk de la matriz de adyacencia G, siendo λk el conjunto de los valores propios correspondientes. La ecuación (5) puede considerarse como un proceso iterativo que comienza en t = 0 con un conjunto de condiciones iniciales x0. Independientemente de los valores de x0, el valor de x (t) en t → ∞ será proporcional al vector propio u1 asociado con el autovalor λ1 más grande. Por lo tanto, la centralidad de vectores propios se obtiene directamente del vector propio u1 de la matriz de adyacencia G, que también se mantiene para matrices de adyacencia ponderada. Como se explica en el texto principal, la centralidad acumulada por cada red se obtiene como la fracción de centralidad acumulada por sus nodos. Por último, utilizamos λ1 como medida de la intensidad de la red, ya que está relacionada con una serie de propiedades dinámicas de las redes y, a su vez, aumenta con el número de nodos, enlaces y el grado medio de la red44.


Selección de los nodos de conectores específicos

Como se explica en la ref. 32, la centralidad de los nodos conectores que enlazan redes independientes puede ser crucial en la distribución final de la centralidad. Los nodos centrales (C) de una red son los nodos con mayor centralidad de vectores propios, mientras que los nodos periféricos (P) son los nodos con una centralidad muy baja (ver Nota Complementaria 2 para más detalles). Cuando se conectan dos redes, los nodos del conector permiten distinguir entre conexiones central-central (CC) o conexiones periféricas-periféricas (PP). Es importante destacar que cuando una red de redes se divide en componentes desconectados, el cluster con el autovalor más grande adquiere toda la centralidad, mientras que el resto de los componentes (débiles) acumulan centralidad cero. Las conexiones PP conducen a un escenario cercano al caso desconectado, empujando casi la totalidad de la centralidad hacia la red fuerte. En consecuencia, cualquier estrategia de conexión basada en enlaces PP es prácticamente equivalente a negarse a conectarse con cualquier otra red. Por esta razón, hemos restringido las estrategias de las redes a las conexiones CC o sin conexiones (negarse a conectarse).

Por último, cabe señalar que las reglas de la competencia permiten a las redes conectarse a través de más de un enlace (por ejemplo, en A↔B). Por simplicidad, a lo largo de los ejemplos estudiados en este trabajo, representamos w enlaces conectores entre redes como un enlace de peso w. Sin embargo, en ciertos sistemas, los enlaces con un peso mayor que uno no podrían tener ningún significado real. En esos casos, el segundo (tercero, etc.) vínculo entre dos redes debe ser construido entre su segundo (tercero, etc) nodos más centrales, manteniendo la fenomenología cualitativamente sin cambios.

La matriz de adyacencia y los procesos dinámicos
Una variedad de procesos dinámicos que ocurren en una red puede ser descrita matemáticamente como n (t + 1) = Mn (t), donde n (t) es un vector cuyos componentes son el estado de cada nodo en el tiempo t (por ejemplo, el Población de individuos en cada nodo), y M, con Mij≥0, es una matriz que contiene las peculiaridades del proceso dinámico. Como M es una matriz primitiva, su valor propio más grande es positivo, verifica que λ1> | λi |, ∀ i> 1 y su vector propio asociado también es positivo. Por lo tanto, la dinámica de todo el sistema está dada por



De la ecuación (6) se obtiene que el sistema evoluciona hacia un estado asintótico independiente de la condición inicial y proporcional al primer vector propio u1:



Mientras que su valor propio asociado λ1 produce la tasa de crecimiento en el equilibrio asintótico. Si n (t) se normaliza de tal manera que | n (t) | = 1 después de cada iteración, n (t) → u1 cuando t → ∞ y existe una correspondencia entre la centralidad de vectores propios y el estado asintótico del sistema en equilibrio: Tanto la centralidad del vector propio como el estado asintótico del sistema son proporcionales al vector propio asociado con el autovalor más grande de la matriz de transición M.

Con respecto a la fenomenología presentada en este trabajo, en el caso de que estuviéramos preocupados por un proceso dinámico específico, reemplazaríamos la matriz de adyacencia G por la matriz de transición M, obteniendo la centralidad de vectores propios retenida por cada red sin pérdida de generalidad.



Referencias


1. Newman, M. E. J. The structure and function of complex networks. SIAM Rev. 45, 167–256 (2003). ISI Article
2. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M. & Hwang, D. U.Complex networks: structure and dynamics. Phys. Rep 424, 175–308 (2006). ISI Article
3. Newman, M. E. J. Networks: an introduction Oxford Univ. Press (2010).
4. Castellano, C., Fortunato, S. & Loreto, V. Statistical physics of social dynamics. Rev. Mod. Phys. 81, 591–646 (2009). ISI Article
5. Pastor-Satorras, R. & Vespignani, A. Epidemic spreading in scale-free networks. Phys. Rev. Lett. 86, 3200–3203 (2001). ISI CAS PubMed Article
6. Castellano, C. & Pastor-Satorras, R. Thresholds for epidemic spreading in networks. Phys. Rev. Lett. 105, 218701 (2010). CAS PubMed  Article 
7. Centola, D. The spread of behavior in an online social network experiment. Science 329, 1194–1197 (2010). ISI CAS PubMed Article
8. Gross, T. & Blasius, B. Adaptive coevolutionary networks: a review. J. R. Soc. Interface 5, 259–271 (2008). ISI PubMed Article
9. Apicella, C. L., Marlowe, F. W., Fowler, J. H. & Christakis, N. A.Social networks and cooperation in hunter-gatherers. Nature 481, 497–501 (2012). ISI CAS PubMed Article
10. Michor, F. & Nowak, M. A. The good, the bad and the lonely. Nature 419, 677–679 (2002). ISI
CAS PubMed Article
11. Szabo, G. & Fath, G. Evolutionary games on graphs. Phys. Rep. 446, 97–216 (2007). Article
12. Dreber, A., Rand, D. G., Fudenberg, D. & Nowak, M. A. Winners don’t punish. Nature 452, 348–350 (2008). ISI CAS PubMed Article
13. Santos, F. C., Santos, M. D. & Pacheco, J. M. Social diversity promotes the emergence of cooperative behavior. Nature 454, 213–216 (2008).  ISI CAS PubMed Article
14. Dall’Asta, L., Marsili, M. & Pin, P. Collaboration in social networks. Proc. Natl Acad. Sci. USA 109, 4395–4400 (2012). Article 
15. Perc, M. & Szolnoki, A. Coevolutionary games - a mini review. BioSystems 99, 109–125 (2010).  ISI PubMed Article
16. Wang, Z., Szolnoki, A. & Perc, M. Self-organization towards optimally interdependent networks by means of coevolution. New J. Phys. 16, 033041 (2014). Article
17. Wang, Z., Wang, L., Szolnoki, A. & Perc, M. Evolutionary games on multilayer networks: a colloquium. Eur. Phys. J. B 88, 124 (2015). CAS Article
18. Kivelä, M. et al. Multilayer networks. J. Complex Netw. 2, 203–271 (2014). Article
19. Boccaletti, S. et al. The structure and dynamics of multilayer networks. Phys. Rep. 544, 1–122 (2014). Article
20. Buldyrev, S. V., Parshani, R., Paul, G., Stanley, H. E. & Havlin, S.Catastrophic cascade of failures in interdependent networks. Nature 464, 1025–1028 (2010). ISI CAS PubMed Article
21. Radichi, F. & Arenas, A. Abrupt transition in the structural formation of interconnected networks. Nat. Phys. 9, 717–720 (2013). ISI CAS Article 
22. Aguirre, J., Sevilla-Escoboza, R., Gutiérrez, R., Papo, D. & Buldú, J. M. Synchronization of interconnected networks: the role of connector nodes. Phys. Rev. Lett. 112, 248701 (2014). CAS
PubMed Article
23. Quill, E. When networks network. ScienceNews 22 September 182, 18 (2012).
24. Nash, J. Equilibrium points in n-person games. Proc. Natl Acad. Sci. USA 36, 48–49 (1950).
CAS PubMed Article
25. Jackson, M. O., Rodriguez-Barraquer, T. & Tan, X. Social capital and social quilts: network patterns of favor exchange. Am. Econ. Rev. 102, 1857–1897 (2012). Article
26. Banerjee, A., Chandrasekhar, A. G., Duflo, E. & Jackson, M. O. The diffusion of microfinance. Science 341, 1236498 (2013). CAS PubMed Article
27. Hasanov, T., Ozeki, M. & Oka, N. in Proceedings of the 15th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing 53–57IEEE Computing Society (2014). 
28. Battiston, S. et al. Complexity theory and financial regulation. Science 351, 818–819 (2016).
CAS PubMed Article
29. Anand, K., Gai, P., Kapadia, S., Brennan, S. & Willison, M. A.Network model of financial system resilience. J. Econ. Behav. Org.85, 219–235 (2013). Article
30. Minoiu, C. & Reyes, J. A. A network analysis of global banking: 1978-2010. J. Financial Stability 9, 168–184 (2013). Article
31. Acemoglu, D., Ozdaglar, A. & Tahbaz-Salehi, A. Systemic risk and stability in financial networks. Am. Econ. Rev. 105, 564–608 (2015). Article
32. Aguirre, J., Papo, D. & Buldú, J. M. Successful strategies for competing networks. Nat. Phys. 9, 230–234 (2013). CAS Article 
33. Osborne, M. J. & Rubinstein, A. A Course in Game Theory MIT Press (1994).
34. König, M. D., Battiston, S., Napoletano, M. & Schweitzer, F. On algebraic graph theory and the dynamics of innovation networks. Networks Heterogeneous Media 3, 201–219 (2008). Article
35. Aguirre, J., Buldú, J. M. & Manrubia, S. C. Evolutionary dynamics on networks of selectively neutral genotypes: effects of topology and sequence stability. Phys. Rev. E 80, 066112 (2009). CAS
Article
36. Klemm, K., Serrano, M. A., Eguíluz, V. M. & San Miguel, M. A measure of individual role in collective dynamics. Sci. Rep. 2, 292 (2012).  CAS PubMed Article
37. Arenas, A., Daz-Guilera, A., Kurths, J., Moreno, Y. & Zhou, C.Synchronization in complex networks. Phys. Rep. 469, 93–153 (2008). Article
38. Bollobás, B., Borgs, C., Chayes, J. & Riordan, O. Percolation on dense graph sequences. Ann. Probab. 38, 150–183 (2010). Article
39. Komatsu, T. & Namatame, A. Dynamic diffusion in evolutionary optimised networks. Int. J. Bio-Inspired Comput. 3, 384–392 (2011). Article
40. Duby, G. Le temps des cathédrales. L'art et la société (980–1420)Gallimard (1976).
41. de Seta C., le Goff J. (eds) La città e le mura Edizioni Laterza, Roma-Bari (1989).
42. Grauwin, S., Bertin, E., Lemoy, R. & Jensen, P. Competition between collective and individual dynamics. Proc. Natl Acad. Sci. USA 106, 20622–20626 (2009). Article
43. Newman, M. E. J. Analysis of weighted networks. Phys. Rev. E 70, 056131 (2004). CAS Article
44. Restrepo, J. G., Ott, E. & Hunt, B. R. Characterizing the dynamical importance of network nodes and links. Phys. Rev. Lett. 97, 094102 (2006). 


miércoles, 16 de noviembre de 2016

Big data muestra regularidades en la conducta social

Grandes datos muestran que el comportamiento colectivo de la gente sigue patrones periódicos fuertes



Nuevas investigaciones han revelado que mediante el uso de grandes datos para analizar conjuntos de datos masivos de noticias modernas e históricas, medios de comunicación social y páginas de Wikipedia, se pueden observar patrones periódicos en el comportamiento colectivo de la población que podrían pasar desapercibidos.

Los académicos del proyecto ThinkBIG de la Universidad de Bristol, dirigidos por Nello Cristianini, profesor de Inteligencia Artificial, han publicado dos artículos que han analizado patrones periódicos en el contenido y consumo diario de los medios de comunicación.
Los dos conjuntos de hallazgos, considerados en conjunto, muestran que el comportamiento colectivo de la gente sigue patrones periódicos fuertes y es más predecible de lo que se pensaba anteriormente. Sin embargo, estos patrones a menudo sólo pueden ser revelados al analizar las actividades de un gran número de personas durante un tiempo muy largo, y hasta hace poco esto ha sido una tarea muy difícil.
Mediante el uso de grandes tecnologías de datos, ahora es posible obtener una visión unificada del contenido de los periódicos, para decenas de periódicos al mismo tiempo, que abarcan varias décadas o analizar los contenidos publicados en Twitter por un gran número de usuarios o incluso las páginas de Wikipedia visitadas .
El profesor Nello Cristianini, del Departamento de Matemáticas de Ingeniería, dijo: "Lo que emerge es un vistazo a las regularidades en nuestro comportamiento que se esconden detrás de las variaciones cotidianas en nuestras vidas.
"Nuestros dos artículos han demostrado que mediante el análisis de conjuntos de datos masivos de noticias modernas e históricas, medios de comunicación social y páginas de Wikipedia, podemos obtener una mirada sin precedentes a nuestro comportamiento colectivo, revelando ciclos que ciertamente sospechamos, pero que nunca se han observado antes . "
El primer trabajo, publicado en la revista PLOS ONE, analizó 87 años de los periódicos estadounidenses y británicos entre 1836 y 1922. Los investigadores encontraron que el ocio y el trabajo de la gente estaban fuertemente regulados por el clima y las estaciones, En el Reino Unido y EE.UU.
Gran parte de nuestra dieta estaba influenciada por las estaciones también, con horarios muy predecibles para diferentes frutas y alimentos, e incluso flores, en las noticias históricas. Lo mismo se encontró para las enfermedades, como la temporada alta de sarampión en ambos países se encontró a finales de marzo a principios de abril. Curiosamente, un fuerte indicador fue proporcionado por la reaparición muy periódica de grosellas en junio, que ya no se encuentra en las noticias modernas, junto con muchas otras tradiciones perdidas.
Esto puede parecer obvio, pero el equipo de investigación también notó que ciertas actividades que solían ser muy regulares, como las conferencias de Navidad, ahora casi han desaparecido y han sido reemplazadas por otras actividades periódicas, como el fútbol, ​​Ibiza, Oktoberfest. De alguna manera, la TV ha reemplazado parcialmente el clima como un factor importante de sincronización de la vida de las personas.
En el segundo trabajo, que se presentará el próximo mes en un taller de la Conferencia Internacional de Minería de Datos del IEEE 2016 (ICDM), los investigadores descubrieron que las estaciones también pueden tener fuertes efectos sobre la salud mental. El equipo analizó el sentimiento agregado en Twitter en el Reino Unido, además de acceso agregado a Wikipedia durante cuatro años. Encontraron que el sentimiento negativo es sobreexpresado en el invierno, alcanzando su máximo en noviembre, y la ansiedad y la cólera son sobreexpresado entre septiembre y abril.
Al mismo tiempo, un análisis de las visitas de Wikipedia a páginas de salud mental, globalmente pero fuertemente dominadas por el tráfico del hemisferio norte, mostró una estacionalidad clara en las búsquedas de formas específicas de problemas mentales. Por ejemplo, las visitas a la página sobre el padecimiento de trastornos afectivos estacionales a finales de diciembre y las visitas al trastorno de pánico alcanzan su punto máximo en abril, al mismo tiempo que las visitas a la página sobre el trastorno de estrés agudo.
En conjunto, estos dos artículos muestran que el uso de múltiples fuentes de datos grandes puede permitir a los investigadores observar el comportamiento colectivo, e incluso el estado de ánimo y la salud mental, de grandes poblaciones, revelando ciclos por primera vez que se sospecha pero fueron difíciles para observar.


Phys,org

lunes, 14 de noviembre de 2016

Red criminal georgiana en España

MAFIA GEORGIANA
La larga sombra del capo Darsadze
La mafia georgiana dirigida por un ‘ladrón en ley’ encarcelado comete cientos de atracos en domicilios de España. La Policía le atribuye el 60 % de los robos en viviendas de la Comunidad de Madrid

JOSÉ ANTONIO HERNÁNDEZ | JOAQUÍN GIL
El País

Todo ocurrió a las 14.30 horas. Un fornido hombre de 75 años se desploma a la entrada de un restaurante en el centro de Moscú. Aslan Usoyan, alias abuelo Hasan, se desangra en segundos. El tiro de gracia del francotirador ha sido certero.

  Estructura de la mafia georgiana en España y Europa

El asesinato el 16 de enero de 2013 del capo de la mafia georgiana de la rama de los Tblisi Aslan Usoyan llevó la firma de uno de los suyos. La negativa de este ladrón en ley (jefe) a reconocer a los nuevos líderes coronados en una cumbre criminal en Dubai un mes antes resultó letal. Los vor v zakone, cabecillas de una banda transnacional especializada en desvalijar pisos, no toleran la disidencia. Usoyan fue víctima del clan Kutaisi, según informes de la inteligencia.

El Juzgado Central número 3 de la Audiencia Nacional investiga de cerca los movimientos en España de la mafia georgiana de los ladrones en ley. La Policía les atribuye el 60 % de los robos cometidos en domicilios en la Comunidad de Madrid, según ha podido saber EL PAÍS. Durante el primer trimestre de este año, 4.516 viviendas madrileñas fueron asaltadas, según el Ministerio del Interior.


El capo de la mafia georgiana Knyazevich Kalashov durante su traslado a España desde Dubai en una imagen de junio de 2006. EL PAÍS

A sus 44 años, Zviad Darsadze es el cabecilla de la mafia georgiana en España. Coronado vor en 2000, los investigadores describen a este hombre nacido en Kutaisi, la segunda ciudad del país caucásico, como un amante del lujo y los restaurantes exclusivos que carece de empleo conocido. Su tren de vida no encaja con los 3.504 euros que percibió oficialmente en 2010 como trabajador de una empresa de compraventa de frutas y hortalizas en Guadassuar (Valencia).

Darsadze es un capo con funciones de juez para dirimir disputas. Pero también un respetado oráculo en la toma de decisiones que combina el liderazgo con la supervisión de los asaltos, generalmente en tareas de vigilancia. Por estas y otras fechorías, el vor se encuentra en prisión desde el pasado año. La Policía le describe como el cabecilla de la red desmantelada en la Operación Aikon, que se saldó en julio de 2015 con una treintena de arrestos. Y frustró el saqueo de centenares de viviendas en la Comunidad Valenciana, Murcia y Cataluña. La Audiencia Nacional asume desde entonces la investigación al atribuir a la banda de ladrones en ley cientos de atracos en España y Europa. El juzgado de Instrucción número 43 de Madrid fue el primero en instruir el caso.

La organización tiene medio centenar de miembros. Solo Zviad y otro integrante más están en prisión. En el grupo destaca el hombre que hace las funciones de guardaespaldas, relaciones públicas y lugarteniente del vor, Archil Giorgobiani. Junto a él, Merab Toroshelidze se encarga de colocar la mercancía. Y también suministra los juguetes, que es como la banda denomina a las ganzúas e inhibidores de frecuencia que son adquiridos en una tienda de artículos de espionaje del centro de Madrid. El español Francisco F. actuaría supuestamente como intermediario del botín con tres casas de compraventa de oro de la capital.


El integrante de la mafia georgiana Kakhaber Shushanasvili, en una imagen captada en la Audiencia Nacional en diciembre de 2011 EFE / KOTE RODRIGO

Los jefes profesan fidelidad absoluta al hombre fuerte de la mafia georgiana, que corresponde con visitas al hospital a sus chicos tras los tiroteos. Citas clave como el cumpleaños de Darsadze, que se celebró en febrero de 2015 en un hotel de cinco estrellas de la zona de Avenida América de Madrid, sirven para aproximarse al vor. Y también para hablar de las shodkas (cumbres criminales) que se registraron ese año en Armenia y Turquía. Al cumpleaños del capo en Madrid asistió Varlam Kukhianidze, condenado en 1997 a siete años por secuestro y extorsión.

La red de Darsadze es familiar. Y en ella figura la esposa del vor, responsable de supervisar las transferencias; el hermano del jefe, encargado de una célula de siete atracadores. Y un vástago del cabecilla que adquiere pisos en Georgia con el dinero de la organización, según las pesquisas.

Tras hacerse con el botín, la mercancía planea a través de un alambicado entramado de blanqueo compuesto por sociedades pantalla, peristas, correos humanos rumbo a Georgia y transferencias a través de agencias como MoneyGram, Ria Money o Western Union. El dinero acaba en Rusia en una obschack, una caja común o hucha que centraliza los flujos de capital de todas las facciones europeas de vor v zakone. Darsadze se encarga de decidir las cantidades enviadas desde España, pero también controlaría el dinero recaudado en Francia y Alemania, según los agentes. Del bote común salen los beneficios que se reparten los capos y la financiación de esta compleja telaraña criminal, que está siendo investigada por la Brigada Provincial de la Policía Judicial de Madrid, la Unidad de Drogas y Crimen Organizado (UDYCO) y la Guardia Civil en La Rioja por algunos golpes a viviendas cometidos en Calahorra (24.000 habitantes) y Arnedo (15.000).


Primera sesión del juicio celebrado en noviembre de 2009 en la Audiencia Nacional contra la mafia ruso-georgiana arrestada en la Operación Avispa. EFE

Las pesquisas revelan vínculos del vor Darsadze con homólogos en Francia, Italia, Alemania, Austria, Suiza y Grecia. La Policía relaciona al ladrón en ley de España con una empresa que roba coches en Bélgica y Alemania para su posterior venta en Europa del Este.

Una red de confidentes con tentáculos en Europa informa al vor Darsadze en tiempo real sobre los arrestos. El protagonista de esta historia recibe informes telefónicos sobre los hombres que no se avienen a la autoridad. Uno de estos reportes llegó desde Grecia en febrero de 2015. Al otro lado del móvil estaba Zara Ambroladze, condenado a siete años de prisión por tráfico de armas.

Zviad Darsadze es un hombre con un poder omnímodo. Así lo demostró en una conversación en marzo de 2015 cuando aleccionó a un colaborador sobre cómo encarrilar a un grupo díscolo. “Hazles llegar mis palabras. Me follo a sus madres. Diles que es el mensaje de Zviad”.

investigacion@elpais.es

LLAVES MÁGICAS Y MARCADORESLa mafia georgiana asentada en España tiene sus cuarteles generales en Madrid y Alcobendas, donde reside el entorno del jefe Zviad Darsadze. Desde el centro del país, los corpulentos atracadores planean el saqueo de cientos de viviendas.
Procedentes en su mayoría de las ciudades georgianas de Tbilisi y Kutaisi, la banda de los vor v zakone actúa como una maquinaria itinerante. Mediante un enjambre de pisos patera –que figuran a nombre de mujeres georgianas, ucranianas y rusas- la red campa a sus anchas por España y Europa, según informes policiales.
La organización actúa en grupos de cuatro. Dos vigilan en el exterior de las viviendas móvil en mano mientras que el resto comete el asalto en sigilo. Un marcador, plástico transparente de una cajetilla de tabaco situado entre el marco y la puerta, confirma previamente que hay vía libre. La casa está vacía.
Los ladrones en ley combinan las ganzúas con el eficaz magic key, un artilugio reservado para cerrajeros profesionales pero que se puede comprar por Internet sin dar explicaciones. El aparejo posibilita abrir un portón acorazado en quince minutos y fabricar una llave con la puerta cerrada. Otra variante es el bumping, una técnica que consiste en introducir una llave en la cerradura y golpearla con un objeto hasta que cede.
La banda de los ladrones en ley prefiere trabajar de día en invierno. Y comienza su jornada de atracos a partir de medianoche en verano, según informes policiales.
Para despistar a los investigadores, los ladrones manejan documentación falsa. Se hacen pasar por ciudadanos de Lituania, República Checa, Bulgaria y Polonia. Disponen además de decenas de móviles y usan programas de llamadas gratis por Internet como Skype o Viber por seguridad. La mayoría son reincidentes y tienen antecedentes por robo con violencia o falsificación. Salen de prisión y vuelven a las andadas, concluyen informes policiales.

sábado, 12 de noviembre de 2016

La influencia de los bots en la elección americana

Cómo influyeron los bots políticos en esta elección

Casi el 20 por ciento de todos los tweets relacionados con las elecciones provienen de un ejército de influyentes robots.

Por Nanette Byrnes - MIT Technology Review

Si sus conversaciones políticas en las redes sociales parecen mecánicas y predecibles, podría ser porque está debatiendo con un robot.

Un estudio publicado el día antes de las elecciones encontró un estimado de 400.000 bots operando en Twitter que estaban twittando -y retweeted- a un ritmo notable, generando casi el 20 por ciento de todos los mensajes relacionados con las elecciones.

Además de ser numerosos, estos robots también son muy influyentes y capaces de distorsionar el debate en línea, según los autores Alessandro Bessi y Emilio Ferrara del Instituto de Ciencias de la Información de la Universidad del Sur de California.

Una cosa sigue siendo misteriosa: ¿quién los está creando? Eso es aún imposible de determinar, dijo Ferrara MIT Technology Review en una discusión sobre su estudio, llevado a cabo durante un mes este otoño, un período que incluyó los tres debates presidenciales. A continuación se muestra una transcripción editada.

En el estudio se mide la influencia de los bots, y encontrar que sea sorprendentemente alta. ŻPuedes explicar eso?

Medimos cuántas conexiones tiene una cuenta con otras cuentas y cuántos usuarios diferentes retweet esa cuenta. Lo que encontramos es que la gente no es muy buena para determinar si las fuentes de información a las que están expuestos son un humano o un bot. Los bots se están retweeted al mismo ritmo que los seres humanos. Dado que los bots son mucho más activos y producen [muchos más tweets] el subproducto es que están siendo retweeted mucho y se vuelven influyentes. Eso lleva a algunos problemas serios con retweeting-propagación de la desinformación, difusión de rumores, teorías de la conspiración, y así sucesivamente.


Este mapa del estudio muestra el volumen de tweets bots generados entre el 16 de septiembre y el 21 de octubre de 2016 por estado, lo que indica que un estado, Georgia, es el mayor contribuyente.


Este mapa del estudio refleja el volumen de tweets humanos generados entre el 16 de septiembre y el 21 de octubre de 2016 por estado. Muestra la conversación que es conducida por los estados más populosos, incluyendo California, Tejas, la Florida, Illinois, y Nueva York.

¿Espera que esto tenga un impacto en el resultado de las elecciones?

Es realmente difícil o incluso imposible hacer una interpretación de qué influencia tienen estas dinámicas en el resultado de la elección, la votación real y así sucesivamente. Una cosa en riesgo es la participación de votantes. Encontramos en algunos estados, en particular en el Sur y el Medio Oeste, hay mucho más bots que en cualquier otro estado. La gente podría pensar que hay un apoyo de base real allí, pero en realidad todo es generado por los bots.

Casi el 75 por ciento de los bots que encontró apoyaban al candidato republicano Donald Trump, y los mensajes en sus tweets eran diferentes.

Los bots que apoyan a Donald Trump están realmente produciendo una cantidad abrumadoramente grande de apoyo positivo para el candidato, mientras que en el caso de los partidarios de Hillary Clinton, más tweets son neutrales que positivos.

Los bots de medios sociales que se involucran en la política no es un fenómeno totalmente nuevo, pero usted encuentra que la hornada de este año es particularmente sofisticada.

Estos bots son más complejos, usando la inteligencia artificial para charlar con la gente. Pueden agregar el sentimiento en una discusión polarizada y quizás aún más polarizarlo.

Había sido más fácil identificar bots anteriores, pero ahora es increíblemente difícil para un humano hacer una determinación. Hice una prueba en mí mismo, y en algunas cuentas hay señales que son claras, como publicar 1.000 tweets por hora. En otros es más difícil. Parecen que se van a dormir [yendo fuera de línea por un período prolongado cada día]. Ellos tweet cinco, 10, 15 tweets en una fila, y luego ninguno durante una hora. Ellos clonan el comportamiento de las personas.

jueves, 10 de noviembre de 2016

Usando redes para escribir el resumen de literatura de la tesis doctoral

Barriendo Google Scholar para escribir su capítulo de literatura de doctorado
My Student Voices



Diagrama de red de autores clave en mi doctorado. Los enlaces representan citas y coautorías. Los colores son comunidades como lo indica la "modularidad". La clave indica algunas conjeturas aproximadas en lo que los autores de una comunidad tienen en común - en algunos casos hay un ajuste excelente (diseño participativo), en otros mucho menos (lila).

En un post anterior escribí sobre el diseño de un mejor sistema para la publicación académica. Un problema con el ecosistema de publicación comercial es que inhibe a quienes deseen desarrollar nuevas herramientas para navegar por el cada vez mayor cuerpo de investigación. (Por supuesto, también existe la clara injusticia de pedir a los contribuyentes que financien investigaciones que posteriormente no pueden leer).
Esta publicación trata de un prototipo de "red" para encontrar documentos usando datos de Google Scholar, con lo que se podría señalar lo que se podría hacer con datos más abiertos. Pude usar un programa supervisado buscando en Google Scholar para extraer mis datos, pero una versión escalable de esta herramienta requeriría datos abiertos.
También es rascar mi propia picazón: estoy en la etapa de mi doctorado donde necesito juntar todo. Necesito un capítulo de literatura que establezca el contexto teórico para mis cuatro estudios de caso, explicando lo que ya se ha escrito sobre mi tema y aclarando mis términos clave. En mi caso eso significa lo que se ha dicho sobre el tema del diseño participativo, la formulación de políticas, la acción colectiva y el análisis de redes sociales. (Mi título de trabajo es: ¿Cómo pueden los medios de comunicación social informar a la política del gobierno local?)
Hay cuatro áreas que conozco que juegan un papel en mi investigación:
  • Las ideas sociológicas sobre redes (Roland Burt y Mark Granovetter)
  • El trabajo de Elinor Ostrom sobre los bienes comunes
  • Diseño participativo
  • Ética / Política de Steven Lukes, Amartya Sen y John Rawls
¿Existen ya documentos que citen autores de todas estas áreas? ¿Puedo confirmar mi sospecha de que la literatura de diseño participativo casi nunca cita la ciencia política relevante, por ejemplo, la investigación de Steven Lukes sobre el poder o (otra de las ideas favoritas) de James Fishkin sobre la democracia deliberativa? Es hora de hacer algo de codificación ...

Construcción de un prototipo

Uso de Meteor (un paquete de JavaScript) Construí una aplicación web para recopilar datos de Google Scholar. Lo llamé Bibnet (código en github). El proceso comienza con un conjunto de términos de búsqueda que conozco los papeles de retorno que ya cito de Google Académico (lista de 55 términos de búsqueda aquí).
Con la lista de términos de búsqueda, Bibnet realiza dos pasos:

  1. Bibnet registra cada artículo o libro que es devuelto por Google Académico (hasta 10 resultados por término) para cada uno de los términos de búsqueda. Esta información genera una lista de publicaciones en una base de datos. En la misma base de datos, también registra quién escribió cada publicación como una lista de autores.
  2. Usando la "búsqueda dentro de las citas" de Google Scholar, verifica si alguno de los autores registrados en la base de datos ha citado alguna de las publicaciones.

Este proceso genera archivos que se pueden exportar a la herramienta de visualización Gephi.
De las 55 cadenas de búsqueda originales grabé 1120 autores, 1223 publicaciones y 1382 citas. (Lista legible de las citas)

Resultados

Para generar la imagen de abajo, exporté una lista de todos los autores y mostré enlaces entre ellos si habían coautorizado una publicación o si se habían citado. El tamaño de los nodos indica el número de enlaces entrantes, el grosor del borde indica el número de conexiones (citas y coauthoring) entre dos nodos.

La misma imagen que el encabezado, pero con los autores claves rodeados en rojo



Para que el gráfico sea legible, sólo muestro los nodos con más enlaces. Como se describe en el primer epígrafe, los colores representan algoritmicamente descubiertos 'comunidades' utilizando la función de Gefi- s de modularidad - grupos de autores que citan y coautorizan mucho. Estas comunidades son probablemente bastante dependiente del conjunto inicial de búsquedas, sin embargo, algunos de ellos tienen sentido intuitivo. La 'comunidad de diseño participativo', por ejemplo, está muy bien definida. La comunidad rosada son todos los autores que he estado viendo en el tema de la democracia deliberativa.
Por otra parte, S Lukes habría tenido más sentido para mí en la comunidad verde con RA Dahl, a quien su trabajo hace extensa referencia. De hecho, como indica la clave, no puedo decir lo que la comunidad de lilas indica con ningún grado de confianza - su existencia puede ser el resultado de mi muestreo selectivo de la red académica en general. La centralidad del grupo lila indica que son comúnmente referenciados por todos los otros grupos, y Arrow y Rawls son dos de los investigadores con mayor referencia en la red. Puede ser esta propiedad, más que una especialidad de sujeto, que los nodos de lila tienen en común.
Hay una serie de casos límite anómalos como este.


¿Cómo ayuda a escribir un capítulo de literatura?

Me siento más cómodo con el paisaje de mi investigación con la red como una visión general, y la intención de añadir nuevas referencias a medida que surgen. Algunas lecciones clave se destacaron:

  • Y Guo, un investigador que nunca he encontrado (y probablemente no habría hecho a través de mi enfoque normal) está haciendo una investigación similar a la mía y haciendo referencia a la misma mezcla ecléctica de fuentes.
  • Mi creencia anterior de que la comunidad de diseño participativo no hace referencia a Lukes ha resultado ser errónea. Mi opinión anterior se basaba en lo que yo pensaba que era una búsqueda sustancial, por lo que este fue un hallazgo sorprendente. Es difícil encontrar enlaces de citas usando un proceso manual cuando cualquier investigador de diseño participativo podría haber citado a Lukes.
  • La comunidad de diseño participativo es difícil de entender. Este enfoque me ha ayudado a concentrarme en Hillgren como un autor muy relevante, un autor que no conocía antes.
  • Estoy sorprendido (y complacido) de ver que Fishkin, que siempre parecía aislado para mí, está realmente bien integrado entre los autores que estoy haciendo referencia.
  • Estoy interesado en The making of the social world del filósofo John Searle como parte de mi investigación. Aunque el libro estaba en las búsquedas iniciales, y el trabajo de Searle es famoso y ampliamente referenciado, no apareció como un nodo bien conectado en mi red. Tal vez su investigación no es tan relevante como yo pensaba, o tal vez es una conexión que debe hacerse.
  • Bjorgvinsson es el nodo más grande de la red, lo que significa que tienen la mayoría de los enlaces entrantes. Sin embargo, su investigación no es de particular relevancia para la mía. 'Eyeballing' sugiere que Bjorgvinsson tiene muchas conexiones dentro del diseño participativo, pero poco alcance más amplio. Esta estructura de conectividad todavía nos dice algo sobre la comunidad, incluso si, como en este caso, puede que no sea algo que deba seguir.

Creo que un análisis más profundo podría revelar documentos menos citados que citan combinaciones interesantes de mis autores clave.
Este enfoque parece especialmente relevante para mi trabajo porque me estoy posicionando en relación con varias disciplinas. También parece importante en las humanidades más amplias, donde la búsqueda por palabra clave puede fallar al devolver resultados relevantes de otra disciplina con un vocabulario diferente.
Por último, debo reconocer en primer lugar que la red de citas no es la única manera de descubrir documentos, y también que Google Scholar es una fuente incompleta de datos en sí.

¿No es esto sólo un tipo avanzado de la dilación?

No le digas a mis supervisores.

martes, 8 de noviembre de 2016

Redes matrimoniales y el tabú del incesto

matrimonio consanguíneo
Mantenerlo en la familia

El matrimonio entre parientes cercanos es demasiado común

The Economist




MAHA SAAD ZAKI, profesor de genética clínica, lleva a Ahmed, Fátima y su familia a su habitación en el Centro Nacional de Investigación de Egipto. Al menos tres de sus seis hijos tienen una enfermedad neurológica rara que se manifiesta alrededor de los cuatro años, causando retraso mental, pérdida del uso de sus extremidades y, más tarde, muerte. La hija de nueve años de la pareja se desploma, temblando. Esta enfermedad congénita ha aparecido porque, además de ser marido y mujer, Ahmed y Fátima son también primos hermanos (sus nombres han sido cambiados).

Casos como estos son muy comunes en el Medio Oriente y el norte de África. Casarse con un pariente cercano incrementa notablemente la probabilidad de que ambos padres sean portadores de genes recesivos peligrosos, lo que puede causar enfermedad cuando un niño hereda una copia del gen de ambos padres, como ocurrirá en el 25% de los casos. La gama de estas enfermedades va desde las conocidas como la microcefalia (en la que los niños tienen cabezas inusualmente pequeñas), la fibrosis quística y la talasemia, un trastorno sanguíneo, hasta trastornos completamente nuevos. "El noventa por ciento de los casos que veo son causados ​​por matrimonios consanguíneos", dice la Sra. Zaki.

Las estadísticas sobre la prevalencia de matrimonios entre parientes cercanos hoy en día son escasas. Una vez que la práctica común en las sociedades occidentales, las estimaciones sugieren que el Oriente Medio, junto con África, siguen teniendo los niveles más altos del mundo. En Egipto, alrededor del 40% de la población se casa con un primo; La última encuesta realizada en Jordania, en 1992, encontró que el 32% estaba casado con un primo hermano; Otro 17,3% estaban casados ​​con parientes más distantes. Se cree que las tasas son aún más altas en países tribales como Irak y los estados del Golfo de Arabia Saudita, Yemen y Kuwait.

Hoy la primera razón por la que los hombres y las mujeres buscan casarse dentro de la familia es porque saben mucho de sus parientes: quiénes son, qué ganan, qué errores pasados. Y las familias grandes significan que tienen muchos de ellos. "La gente está buscando la ética y las costumbres", dice Atef al-Shitany, del Ministerio de Salud de Egipto. Atar el nudo dentro también asegura la propiedad permanece en la familia. En Egipto superior, una zona agrícola rural, las tarifas son las más altas de Egipto.

A diferencia de Occidente, no hay estigma social; todo lo contrario. Una mujer egipcia de 38 años, que tiene dos hijos con micro-síndrome (que causa cataratas, pequeños genitales y dificultades de aprendizaje) debido a su matrimonio con un primo, dice que los familiares la critican por permitir que su hija de 18 años Para comprometerse con un "extraño" -el prometido no es una relación.

Muchos piensan erróneamente que los primos maternos no son parientes de sangre. La creencia islámica prevalente refuerza el matrimonio mixto, aunque también sucede entre los cristianos. El Corán permite el matrimonio a cualquier persona, pero los padres, hermanos, tías y tíos, sobrinos y sobrinas. De hecho, Fátima, la hija de Muhammad, se casó con su primo, Ali Ibn Abi Talib, señala Ahmed Mamdouh de Al Azhar, una universidad egipcia.

Muchos en la región, sin embargo, simplemente no saben de los riesgos de casarse con un miembro de la familia. Una pequeña encuesta realizada en Arabia Saudita encontró que los participantes eran 50% menos propensos a ver casarse con un primo de manera positiva cuando se les advierte de los problemas. "No nos habríamos casado si hubiéramos sabido", dice Ahmed.

Para reducir los trastornos genéticos, algunos países han hecho pruebas de sangre obligatoria para los novios, que han ayudado a reducir la incidencia de enfermedades como la anemia de células falciformes. En Túnez, el gobierno ordena consejería prematrimonial para todos los prometidos a un pariente.

En Egipto, donde la educación es a menudo rudimentaria, hay mucho más trabajo por hacer. Las parejas que conocen los riesgos a menudo creen-a veces porque su médico les dice que-los análisis de sangre básicos descartan el riesgo de cualquier enfermedad genética. "La única forma de evitar el sufrimiento no es casarse con parientes", dice Zaki. "Pero eso será imposible de lograr aquí."

domingo, 6 de noviembre de 2016

Bibliometría: Índice H


Índice h
El índice h es un sistema propuesto por Jorge Hirsch, de la Universidad de California, para la medición de la calidad profesional de físicos y de otros científicos, en función de la cantidad de citas que han recibido sus artículos científicos. Un científico tiene índice h si ha publicado h trabajos con al menos h citas cada uno.



h-index de un gráfico de citas decrecientes de papers numerados.

Definición

El índice h se calcula con base en la distribución de las citas que han recibido los trabajos científicos de un investigador. Al respecto, Hirsch dice:

Un científico tiene índice h si el h de sus Np trabajos recibe al menos h citas cada uno, y los otros (Np - h) trabajos tienen como máximo h citas cada uno.1
Explicado de otro modo, si el factor h vale n, entonces n publicaciones han sido citadas más de n veces. Para hallarlo, basta ordenar los artículos de un autor o grupo por número de veces que han sido citados de mayor a menor, e ir recorriendo la lista hasta encontrar la última publicación cuyo número correlativo sea menor o igual que el número de citas: ese número correlativo es el factor h.

Así, el índice h es el balance entre el número de publicaciones y las citas a estas. El índice se diseñó para medir eficazmente la calidad del investigador, a diferencia de sistemas de medición más sencillos que cuentan citas o publicaciones, donde se hace una distinción entre aquellos investigadores que tienen una gran influencia en el mundo científico de aquellos que simplemente publican muchos trabajos. El índice funciona eficazmente solamente entre científicos del mismo campo, pues los mecanismos convencionales para citar los trabajos difieren entre cada uno de estos.

Hay programas en línea para calcular el índice h de un científico. También los índices h se pueden calcular manualmente, basándose en bases de datos accesibles en Internet, como Google Scholar, como una alternativa al tradicional factor de impacto de revistas a las que no se puede acceder libremente. Hirsch ha demostrado que h tiene importantes capacidades predictivas en relación con los honores que un científico pueda recibir o haya recibido, tales como el Premio Nobel. En física, un científico considerado productivo tiene un h por lo menos igual a la cantidad de años que lleva trabajando, mientras que en la ciencia biomédica estos valores son generalmente más altos.

Ciencias de la Computación Índice H significa 23, mediana 21
Psicología índice H significa 26, mediana 19
Enfermería Índice H media 20, mediana 18
Ciencias Sociales Índice H significa 19, mediana 16
Física / matemáticas H-índice media 23, mediana 22
Bio-medicina índice H significa 28, mediana 25



Ventajas

La principal desventaja de los viejos indicadores bibliométricos, tales como el número total de artículos o el número de citas es que en la primera medida no se aprecia la calidad de las publicaciones científicas, y la segunda se ve afectada desproporcionadamente por grupos que tienen pocas publicaciones y, sin embargo, un número grande de citas. El índice h pretende medir simultáneamente la calidad y la cantidad de la producción científica.

El índice h también puede calcularse como una función dependiente del tiempo, de dos modos distintos. Originalmente, Hirsch propuso que h dependía linealmente de los años que se llevara investigando. En este caso se podían comparar científicos de edades distintas. Otra posibilidad es calcular h usando artículos publicados dentro de un período específico, por ejemplo, en los últimos 10 años. De este modo se mide la productividad actual.

Críticas

No es muy difícil comprender que el índice h puede llevar a confusiones en cuanto a la importancia de un científico porque, al estar limitado por el número de publicaciones totales, un científico de corta carrera está en clara desventaja y no se considera la importancia de sus primeros trabajos en una medida correcta. Por ejemplo, el índice h de Évariste Galois es 2, y se quedará así por siempre, independientemente del impacto de su trabajo. Adicionalmente, algunas desventajas del factor de impacto se aplican a la vez al índice h. Por ejemplo, los artículos de revisión suelen tener mayor cantidad de citas que los artículos originales, así que un autor hipotético que solamente escribiera revisiones obtendría un índice h mayor que el de los científicos que aportan trabajos originales.

Finalmente, se ha observado que el índice h aminora drásticamente la importancia de trabajos singulares, dando valor a la productividad. En efecto, dos científicos pueden tener el mismo índice h (30, por ejemplo), siendo que uno de ellos escribió un trabajo con 200 citas y el otro no ha escrito ninguno con más de 30. Se han hecho varias propuestas para modificar este error evidente, pero ninguno se ha adoptado a nivel internacional.2 3