jueves, 31 de diciembre de 2020

Visualización de interacciones en blogs científicos

¡Feliz Navidad! Con datos - Blog de ciencia Red social


¡Feliz Navidad!

¿Qué mejor regalo de Navidad que datos frescos? (dice el nerd de doctorado en ciencia y comunicación).





En las últimas semanas, he estado recopilando respuestas a encuestas de blogueros científicos sobre sus decisiones de contenido y otras prácticas de blogs. Cerré la encuesta #MySciBlog la semana pasada, después de recopilar más de 600 respuestas válidas a encuestas de blogueros científicos. ¡Ahora comienza el análisis de datos!

En una sección particularmente exploratoria de mi encuesta, se pidió a los participantes que enumeraran hasta los tres blogs de ciencia principales, además del suyo, que leían con regularidad. Con estos datos, estoy buscando explorar posibles comunidades de práctica y relaciones entre blogueros científicos que puedan llevar a reglas de decisión de contenido compartido o enfoques de blogs.

Después de extraer los datos en Excel y limpiarlos bastante tediosamente (buscando blogs enumerados en nombres alternativos o incorrectos, etc.), mapeé el conjunto de datos resultante en Gephi, un software de mapeo de redes sociales abierto y gratuito. Luego diseñé la red (que consta de nodos de blogs de participantes de la encuesta conectados a través de hasta tres bordes para apuntar a blogs de ciencia 'leídos regularmente') según un algoritmo ForceAtlas 2.

"ForceAtlas2 es un diseño dirigido por fuerzas: simula un sistema físico para espacializar una red. Los nodos se repelen entre sí como partículas cargadas, mientras que los bordes atraen sus nodos, como resortes. Estas fuerzas crean un movimiento que converge a un estado equilibrado. Esto Se espera que la configuración final ayude a la interpretación de los datos ". - Plos One

Cada nodo de la red representa un blog de ciencia, ya sea el blog de un participante de la encuesta o un blog enumerado por un participante. Las comunidades (representadas por nodos codificados por colores) se detectaron automáticamente en Gephi (función de clase de modularidad) con una resolución de 3.0. Los nodos y las etiquetas de los nodos tienen un tamaño de acuerdo con el grado, o cuántas veces el blog (nodo) fue incluido por otros blogueros como leído regularmente.

Full resolution figure (PDF) available at Figshare.com. Cite as Brown, Paige (2014): MySciBlog Survey - Top Read SciBlogs by SciBloggers. figshare. http://dx.doi.org/10.6084/m9.figshare.1278974

Puede consultar un PDF de resolución completa de estos datos aquí. Mientras lo hace, avíseme si ve algún blog representado como más de un nodo, por ejemplo, con nombres mal escritos. Sus comentarios pueden ayudarme a consolidar los datos redundantes. Además, me encantaría conocer su opinión sobre cualquier tendencia o relación que pueda ver surgir de estos datos. Será muy interesante si los resultados de mi encuesta revelan prácticas de blogs comunes entre blogueros que comparten vecinos en esta red. Mis entrevistas en profundidad con blogueros de ciencia revelan que los blogueros a menudo obtienen lecciones sobre enfoques, estilos, "hacer" y "no hacer" de blogs de otros blogs de ciencia que suelen leer.

¡Feliz exploración de datos!

jueves, 24 de diciembre de 2020

Navidad: Las redes de los evangelios

Visualización de datos: mapeo de la red de caracteres de los cuatro evangelios


¿Cómo están estructurados los textos bíblicos? Más allá de la obvia centralidad de Cristo en los Evangelios, ¿encontramos siempre los mismos grupos de personajes, organizados de la misma manera? Este breve estudio plantea la cuestión de la contribución potencial del análisis de redes a los estudios literarios y, en particular aquí, a las ciencias bíblicas.

Martin Grandjean



Los cuatro evangelios cuentan una historia muy similar, pero tienen estructuras ligeramente diferentes: su constitución ha sido uno de los temas más estudiados durante siglos. Sin revolucionar un campo de investigación que consiste en el estudio cuidadoso de estos textos, el análisis de redes permite una visualización relativamente simple de las principales características estructurales de las redes de caracteres de los Evangelios.



En 2013, un colega teólogo sugirió que usara las herramientas del análisis de redes para visualizar estos textos. Después de haberlos comunicado, no había pensado en publicar estos resultados en línea, debido a su naturaleza poco convencional para este campo de estudio bastante tradicional. Pero desde entonces, el análisis de redes de personajes se ha desarrollado (Rochat trabaja en Rousseau en 2014, mis redes de las tragedias de Shakespeare en 2015, o esta interfaz para visualizar obras de teatro como redes interactivas con colegas de UNIL en 2016, y un número creciente de publicaciones en 2019. y 2020, consulte DraCor de Frank Fischer et al., o esta encuesta de Labatut y Bost, por ejemplo), por lo que tiene más sentido desenterrar esas cosas viejas hoy.




Trabajo

GRANDJEAN Martin (2013). “Comparing the Relational Structure of the Gospels: Network Analysis as a Tool for Biblical Sciences“, Society of Biblical Literature (SBL), University of St. Andrews.

Lea el artículo completo (PDF)


Tenga en cuenta que este documento de la conferencia intenta un enfoque muy experimental, en particular dado el estado del campo del análisis de redes de personajes en 2013 y la rareza del uso de estos métodos en las ciencias bíblicas.

Cómo leer estos grafos

Dos personajes (círculos) tienen un enlace (línea) entre ellos si aparecen al mismo tiempo. Cuanto más a menudo aparezcan juntos, más denso formarán un grupo. Esto es lo que les sucede, por ejemplo, a los 12 discípulos que invariablemente forman un grupo muy denso a la derecha de estos cuatro gráficos. Sin embargo, esto no significa que los discípulos formen un grupo homogéneo (esto es particularmente visible en el Evangelio de Juan). Técnicamente hablando, se considera que dos personajes están conectados si aparecen en la misma escena o sección ("perícopas", para ser exactos en el lenguaje bíblico). Estas secciones son unidades temáticas, temporales y espaciales coherentes. Obtenga más información en el periódico.

LAS REDES DEL EVANGELIO




Evangelio según Marcos

Evangelio según Lucas

Evangelio según Juan

Evangelio según Mateo




domingo, 20 de diciembre de 2020

ARS: Usando mapeos de revistas para conocer sus contenidos a través de la visualización

Cómo generar conocimientos de revistas utilizando técnicas de visualización

Generación de conocimientos sobre el rendimiento de la revista
Por la Dra. Daphne van Weijen y Matthew Richardson || Elsevier




Los editores y editores siempre sienten curiosidad por saber cómo se está desempeñando su revista en comparación con otras en el campo. También están ansiosos por descubrir si el contenido que están publicando está atrayendo citas. En este artículo, nos gustaría compartir con usted una serie de técnicas de visualización que pueden ayudar a generar conocimientos sobre el rendimiento de la revista.

Mapeo de términos

¿Cómo puede determinar cuáles son los temas "candentes" en una revista, grupo de revistas o área temática específica? O, más específicamente, ¿qué temas han mostrado un crecimiento activo y un fuerte impacto en la producción de investigación (artículos publicados) en los últimos años? Para responder a esta pregunta, desarrollamos una nueva herramienta de visualización en colaboración con el grupo de investigación CWTS, que se especializa en bibliometría en la Universidad de Leiden. La herramienta tiene acceso a todas las revistas y actas de congresos indexados en Scopus. A partir de esta información, puede generar mapas que revelen las relaciones entre los términos utilizados en los títulos y los resúmenes de los artículos publicados en una o más revistas seleccionadas. Lo hace con la ayuda de un programa de computadora llamado VOSviewer (1).
¿Cómo se crea un mapa de términos?

Hay una serie de pasos involucrados en la producción de un mapa de términos.

  • Primero debemos determinar qué revista o revistas deben incluirse. Si un grupo de revistas o un área temática es el foco del análisis, una búsqueda de palabras clave en Scopus puede ayudar con esto.
  • Una vez elegidas las revistas, la herramienta realiza un análisis de las palabras y frases encontradas en los títulos y resúmenes de los artículos durante un período de tiempo específico (por ejemplo, en los últimos dos, cinco o diez años). Las ventanas de publicación y cita pueden tener valores separados, por lo que también es posible determinar qué tan bien se ha citado el contenido publicado en un año específico en los años posteriores a la publicación.
  • Después de que se genera un mapa, se puede verificar si hay términos no informativos, como nombres de editoriales o sociedades, y términos genéricos como "literatura", "presentación" o "característica". Estos se pueden eliminar y, si es necesario, se puede crear una nueva versión del mapa.

Grupos de términos concurrentes

El mapa que se muestra en la Figura 1 se conoce como mapa de conglomerados de co-ocurrencia. Cada término que aparece al menos cinco veces en los títulos y resúmenes de los artículos de las revistas seleccionadas está representado por un nodo individual en el mapa. Cuanto más grande es el nodo, más artículos contienen el término y cuanto más pequeño es el espacio entre los términos, más a menudo tienden a coexistir. Sin embargo, es importante señalar que esta es una representación 2D de una red multidimensional, por lo que la proximidad de los términos no puede reflejar perfectamente la relación en todos los casos. Finalmente, los términos están coloreados en grupos de términos que tienden a coexistir.

  • Verde (centro y arriba a la izquierda) relacionado con estadísticas y experimentos;
  • grupo rojo (lado derecho) relacionado con la educación en enfermería;
  • grupo azul (abajo a la izquierda) relacionado con la cirugía; y
  • grupo amarillo (izquierda) relacionado con ensayos clínicos y revisiones de la literatura.

La experiencia en el campo puede ayudar a verificar y nombrar adecuadamente los clústeres, así como a predecir qué clústeres es probable que contengan el contenido más citado y por qué.


Figura 1 - Mapa de similitud de clústeres de co-ocurrencia de términos de revistas para un grupo de seis revistas de enfermería seleccionadas de 2009-2012. Fuente: Scopus. Figura 1 - Mapa de similitud de clústeres de co-ocurrencia de términos de revistas para un grupo de seis revistas de enfermería seleccionadas de 2009-2012. Fuente: Scopus.

Términos muy citados

El siguiente paso para determinar los temas candentes en el campo es verificar qué términos se citan relativamente bien en comparación con el resto del contenido publicado en la (s) revista (s). Esto se puede hacer cambiando el color en el mapa de conglomerados para mostrar el impacto medio de las citas de los artículos que contienen ese término, en relación con el impacto medio de las citas (1,00) de todos los artículos incluidos en el mapa (Figura 2). Como las publicaciones más antiguas han tenido más tiempo para ser citadas, las citas se normalizan por año de publicación para hacer posible una comparación justa. En la Figura 2, los términos con un impacto de citas por encima del promedio están coloreados en rojo, los términos con un impacto de citas promedio son verdes y los términos con un impacto de citas por debajo del promedio se muestran en azul.


Figura 2 - Mapa de impacto de citas de co-ocurrencia de términos de revistas para un grupo de seis revistas de enfermería seleccionadas de 2009-2012. Fuente: Scopus Figura 2 - Mapa de impacto de citas de co-ocurrencia de términos de revistas para un grupo de seis revistas de enfermería seleccionadas de 2009-2012. Fuente: Scopus

Podemos ver claramente que los términos relativamente citados tienden a aparecer a la izquierda del mapa. Estos son términos que se encuentran principalmente en los grupos amarillo y verde de la Figura 1, relacionados con experimentos (verde) y ensayos clínicos (amarillo). Los términos muy citados en estas áreas incluyen:

  • Nurse staffing, self-esteem y statistical terms (Dotación de personal de enfermería, autoestima y términos estadísticos) (grupo verde, arriba a la izquierda).
  • Depressive symptoms, meta-analysis, pregnancy y controlled trials (Síntomas depresivos, metaanálisis, embarazo y ensayos controlados) (grupo amarillo, lado izquierdo).

¿Temas de actualidad?

Finalmente, se puede realizar una búsqueda de palabras clave de Scopus para los términos en el mapa con el mayor impacto relativo de citas, para determinar si se trataba de ocurrencias aisladas. El resultado de esta búsqueda de palabras clave, restringida al campo de enfermería, confirmó que había al menos cuatro áreas en este análisis que tenían una tasa de crecimiento anual compuesta (CAGR) de más del 5 por ciento, lo que indica que hubo un aumento por encima del promedio en el número de artículos publicados en estas áreas durante los últimos cinco años, ya que el CAGR promedio es del 3 al 5 por ciento (ver Tabla 1).


Tabla 1 - En la Figura 2, se identificaron términos relativamente citados. En esta tabla, enumeramos la cantidad de artículos que presentan esos términos junto con sus tasas de crecimiento anual compuestas. Fuente: Scopus
 

La búsqueda de palabras clave de Scopus confirmó que los temas sugeridos por el mapa eran de hecho temas que han estado llamando la atención en el campo. Aunque este mapa específico a nivel de campo es algo genérico, proporciona una idea general de dónde buscar temas candentes con más detalle.

Experiencias de un editor
El Dr. Paul H. Gobster es un científico social investigador del Servicio Forestal del Departamento de Agricultura de los Estados Unidos (USDA). Acaba de dimitir después de cuatro años como coeditor en jefe de Landscape and Urban Planning de Elsevier, permaneciendo en la junta de la revista como editor asociado. Él y sus colegas utilizaron mapas de términos para ayudar en el desarrollo de un editorial para el 40 aniversario de la revista (2).

El Dr. Gobster dijo: “Identificamos conceptos y temas importantes representados en su contenido publicado y desarrollamos una serie de tiempo de cuatro mapas para describir cualitativamente los cambios en cada década sucesiva.

El término mapas fue relativamente fácil de interpretar y produjo visualizaciones adecuadas para presentarlas a los lectores dentro de nuestra editorial. Creo que el término mapas tiene un valor adicional para las funciones de planificación estratégica y administrativa de la revista; la agrupación puede ayudar a aclarar el contenido temático para la clasificación de manuscritos y la asignación de presentaciones a los editores asociados, y los grupos y términos específicos (su presencia, posiciones y cualquier cambio). con el tiempo) puede ayudar a identificar subtemas de trabajo emergentes y duraderos ".

Los beneficios del mapeo de revistas

Mientras que los mapas de términos se utilizan para resaltar los temas publicados dentro de una revista o disciplina, el mapeo de revistas se puede utilizar para examinar la posición y el alcance de una revista y sus interacciones con otras revistas en el campo. Al igual que con los mapas de términos, Scopus puede proporcionar los datos de origen, lo que garantiza que el análisis se base en todas las revistas indexadas.

Estos mapas de revistas se crean mediante enlaces de citas. Una cita de un artículo publicado en una revista a un artículo publicado en otra establece que sus respectivos contenidos son relevantes entre sí y sugiere un nivel de similitud entre los dos. En un período de tiempo dado, una revista tiende a contener citas de muchas otras revistas, y las que más cita deben ser las revistas con las que está más estrechamente relacionada. Por ejemplo, si la Revista A proporciona muchas citas a la Revista B y solo unas pocas a la Revista C, esto es una señal de que tiene una conexión más fuerte con la Revista B. Si con el tiempo el saldo cambia de modo que comienza a proporcionar más citas a la Revista. C, esto indica que el alcance de las revistas o la estructura del campo está cambiando y se está volviendo progresivamente más relacionado con la Revista C. Cuando los enlaces de citas se construyen en muchas más revistas que en este ejemplo simplificado, un mapa es una opción conveniente. forma de mostrar los enlaces y ver cómo interactúan las revistas para formar grupos más grandes.

Consulte la Figura 3 para ver un ejemplo de un mapa de revistas basado en las mismas seis revistas de enfermería utilizadas en los ejemplos de mapas de términos anteriores.


Figura 3 - Mapa de revistas basado en un grupo de seis revistas de enfermería seleccionadas de 2009-2012 


Cada revista en el mapa se muestra como un nodo (círculo), con el tamaño determinado por el promedio de citas a los artículos de esa revista en el período de tiempo. Puede ver en la Figura 3 que las revistas de medicina general incluidas en el mapa tienen un impacto promedio de citas mucho más alto que las otras revistas. Las revistas seleccionadas están en azul y todas pertenecen a la región de las revistas principales de enfermería, mientras que otras revistas están en gris y se incluyen debido a sus enlaces de citas a estas revistas semilla. Las relaciones de citas se muestran como bordes (líneas) de grosor variable. Estas relaciones de citas se normalizan por el número de citas recibidas por la revista citada y por el número de citas dadas por la revista que cita. Cuanto más gruesa sea la línea, mayor será la proporción de citas representadas.

En este ejemplo de mapeo, las áreas clave de las diferentes especialidades de las ciencias de la salud se han etiquetado en función de los grupos de revistas. Esto le permite ver los vínculos entre especialidades más amplias, así como revistas individuales. Estas agrupaciones tenderán a ser bastante estables, pero comparar mapas basados ​​en diferentes períodos de tiempo le permite identificar revistas emergentes en un área determinada o las relaciones de investigación cambiantes que hacen que un área temática se vuelva más relevante para otra con el tiempo.

El entorno de citas en el que se encuentra una revista es único y dinámico, y el análisis de este puede utilizarse como un medio objetivo para determinar la posición competitiva de una revista establecida en un campo de investigación.


Usar los mapas para respaldar su trabajo

Tanto el mapeo de términos como el mapeo de revistas pueden ayudar a comparar la revista con la competencia y proporcionar información útil para las reuniones del consejo editorial. Si bien en el texto anterior se han sugerido algunas razones estratégicas para usar estas herramientas analíticas, su ventaja real radica en cuán adaptables son a diferentes preguntas de investigación. Si desea saber más acerca de cómo estas herramientas pueden ayudarlo, u otras herramientas analíticas para proporcionar información sobre la posición de su revista, comuníquese con su editor.

Referencias

(1) Van Eck, N.J., & Waltman, L. (2010) “Software survey: VOSviewer, a computer program for bibliometric mapping”, Scientometrics, Vol 84, No. 2, pp. 523–538.

(2) Gobster, P.H. (2014) “(Text) Mining the LANDscape: Themes and trends over 40 years of Landscape and Urban Planning”, Landscape and Urban Planning, Vol 126, pp. 21–30.