miércoles, 23 de septiembre de 2020

Las matemáticas de la segunda oleada del COVID

¿Cuándo termina una segunda oleada de COVID? Mira las matemáticas

por la Universidad de Sydney || Phys.org




Se suavizaron las series de tiempo y se identificaron puntos de inflexión para Georgia y Ohio. A través de la identificación de puntos de inflexión "verdaderos", se determina que Georgia se encuentra en su primera ola, mientras que Ohio se determina que está en su segunda ola. Ambos estados exhiben su mayor número de casos (hasta el suavizado) en el último día de análisis. Los recuentos diarios exactos varían según la fuente y la fecha en que se accedió a los datos. Crédito: Nick James y Max Menzies


Los matemáticos han desarrollado un marco para determinar cuándo las regiones entran y salen de los períodos de aumento de la infección por COVID-19, lo que proporciona una herramienta útil para que los formuladores de políticas de salud pública ayuden a controlar la pandemia de coronavirus.

El primer artículo publicado sobre el segundo aumento de las infecciones por COVID-19 en los estados de EE. UU. Sugiere que los responsables de la formulación de políticas deberían buscar puntos de inflexión demostrables en los datos en lugar de tasas de infección estables o que no disminuyen lo suficiente antes de levantar las restricciones.

Los matemáticos Nick James y Max Menzies han publicado lo que creen que es el primer análisis de las tasas de infección por COVID-19 en los estados de EE. UU. Para identificar puntos de inflexión en los datos que indican cuándo comenzaron o terminaron las oleadas.

El nuevo estudio de los matemáticos australianos se publica hoy en la revista Chaos, publicada por el Instituto Americano de Física.

"En algunos de los estados con peor desempeño, parece que los legisladores han buscado tasas de infección que se estabilicen o disminuyan levemente. En cambio, los funcionarios de salud deben buscar máximos y mínimos locales identificables, que muestren cuándo los aumentos repentinos alcanzan su punto máximo y cuándo han terminado de manera demostrable". dijo Nick James un Ph.D. estudiante de la Escuela de Matemáticas y Estadística de la Universidad de Sydney.

En el estudio, los dos matemáticos informan un método para analizar los números de casos de COVID-19 en busca de evidencia de una primera o segunda ola. Los autores estudiaron datos de los 50 estados de EE. UU. Más el Distrito de Columbia durante el período de siete meses del 21 de enero al 31 de julio de 2020. Encontraron que 31 estados y el Distrito de Columbia estaban experimentando una segunda ola a fines de julio.

Los dos matemáticos también han aplicado el método para analizar las tasas de infección en ocho estados y territorios australianos utilizando datos de COVIDlive.com.au. Si bien el análisis australiano no ha sido revisado por pares, sí aplica la metodología revisada por pares. El análisis identificó claramente a Victoria como un valor atípico, como se esperaba.




Esta figura agrupa los estados según la similitud en sus puntos de inflexión en las trayectorias de nuevos casos. Se identifican cinco (sub) grupos primarios de series de tiempo con los siguientes comportamientos: los 31 estados principales más D.C. están más allá de su primera ola y ahora están experimentando una segunda ola. Los 13 estados en la parte inferior todavía están en su primera ola. Los últimos seis estados en el medio del diagrama han aplanado la curva después de una ola (Nueva York y Nueva Jersey), están saliendo de la primera ola (Utah y Arizona) o han completado completamente su segunda ola (Vermont y Maine). Crédito: Nick James y Max Menzies
 

"Lo que muestran los datos de Victoria es que los casos aún están disminuyendo y el punto de inflexión, el mínimo local, aún no ha ocurrido", dijo el Dr. Menzies. Dijo que, al menos desde una perspectiva matemática, Victoria debería "mantener el rumbo".

El Dr. Menzies, del Centro de Ciencias Matemáticas Yau de la Universidad de Tsinghua en Beijing, dijo: "Nuestro enfoque permite una identificación cuidadosa de los estados de EE. UU. Con mayor y menor éxito en la gestión de COVID-19".

Los resultados muestran que Nueva York y Nueva Jersey aplanaron por completo sus curvas de infección a fines de julio con un solo aumento. Trece estados, incluidos Georgia, California y Texas, tienen un aumento continuo y creciente de infecciones únicas. Treinta y un estados tuvieron un aumento inicial seguido de una disminución de la infección y un segundo aumento. Estos estados incluyen Florida y Ohio.

El Sr. James dijo: "Este no es un modelo predictivo. Es una herramienta analítica que debería ayudar a los legisladores a determinar puntos de inflexión demostrables en las infecciones por COVID".

Metodología

El método suaviza los datos de recuento de casos diarios sin procesar para eliminar los recuentos bajos artificiales durante los fines de semana e incluso algunos números negativos que ocurren cuando las localidades corrigen errores. Después de suavizar los datos, se utiliza una técnica numérica para encontrar picos y valles. A partir de esto, se pueden identificar puntos de inflexión.

El Dr. Menzies dijo que su análisis muestra que los gobiernos deberían intentar no permitir que aumenten los casos nuevos ni reducir las restricciones cuando el número de casos simplemente se ha estabilizado.

Series de tiempo suavizadas y puntos de inflexión identificados para varios estados: (a) Mississippi (b) Georgia (c) California (d) Texas y (e) Carolina del Norte se les asigna una secuencia valle-pico y se determina que está en su primer aumento. (f) Florida (g) Pensilvania y (h) Ohio se determina que están en sus segundas oleadas, con una secuencia valle-pico-valle-pico. (i) Nueva York y (j) Nueva Jersey se les asigna la secuencia valle-pico-valle y se determina que han concluido su primer aumento y aplanado la curva. (k) Arizona y (l) Maine se asignan valle-valle valle y valle-pico-valle-pico-valle con el valle final al final del período y se determina que están disminuyendo desde su primera y segunda oleadas, respectivamente. Crédito: Max Menzies y Nick James

"Un verdadero punto de inflexión, donde los nuevos casos están legítimamente en recesión y no solo exhiben fluctuaciones estables, debe observarse antes de relajar cualquier restricción".

Dijo que el análisis no era solo una buena matemática, utilizando una nueva medida entre conjuntos de puntos de inflexión, el estudio también se ocupa de un problema de gran actualidad: observar datos estado por estado.

James dijo que empujar agresivamente las tasas de infección al mínimo parecía la mejor manera de derrotar un segundo aumento.

Picos y valles

Para determinar los picos y valles, el algoritmo desarrollado por los matemáticos determina que se produce un punto de inflexión cuando una curva descendente sube o una curva ascendente gira hacia abajo. Sólo se cuentan aquellas secuencias en las que las amplitudes pico y valle difieren en una cantidad mínima definida. Las fluctuaciones pueden ocurrir cuando una curva se aplana por un tiempo pero continúa aumentando sin pasar por una verdadera recesión, por lo que el método elimina estos recuentos falsos.

Ambos de Australia, los dos matemáticos han sido mejores amigos durante 25 años. "Pero este año es la primera vez que trabajamos juntos en problemas", dijo James.

El Sr. James tiene experiencia en estadísticas y ha trabajado para empresas emergentes y fondos de cobertura en Texas, Sydney, San Francisco y la ciudad de Nueva York. El Dr. Menzies es un matemático puro, completando su Ph.D. en Harvard en 2019 y su licenciatura en matemáticas en la Universidad de Cambridge.

lunes, 14 de septiembre de 2020

El exitoso caso de Suecia y mucho por estudiar por qué

Nuevo héroe nacional

De polémico a consagrado: así vive y piensa Anders Tegnell, el padre del modelo sueco contra el coronavirus


Dejó las escuelas abiertas, no decretó cuarentena y no instaló el uso de barbijo. Lo criticaron en todo el mundo, pero el tiempo le dio la razón.




Anders Tegnell, el hombre del momento en Suecia y ahora reconocido por sus aciertos sobre estrategia contra la pandemia. AFP

Gonzalo Sánchez || Clarín.com


“Hacer cuarentena es como intentar matar una mosca con un martillo”. La frase la pronunció el sanitarista sueco Anders Tegnell la semana pasada sentado en el banco de una plaza de Estocolmo, con un vaso térmico de café en la mano. No llevaba barbijo y conversaba a distancia normal con el corresponsal del Financial Times en Escandinavia, Richard Milnes. El periodista había viajado para conocer al hombre que está detrás del “modelo sueco”, un personaje tan criticado como ahora aclamado por los ciudadanos de su país, que le agradecen por no haber cerrado las escuelas, por un verano de libertad y hasta se tatúan -los más exagerados, claro- su rostro en los brazos.

Tegnell tiene 64 años. No le gusta la fama. Era hasta el comienzo del coronavirus un burócrata que recababa datos sobre salud pública. No es político porque en Suecia no hay Ministerio de Salud, sino una agencia sanitaria que diseña estrategias de salud pública y que el Gobierno acepta sin pestañar. En todos estos meses, a Tegnell, que está al frente de esa agencia, no le han objetado ninguna de sus decisiones, a pesar de que casi todas fueron contrarias a la ortodoxia global.

Si un plato volador descendiera ahora sobre Gotemburgo, Estocolmo, Malmo o cualquier otra ciudad sueca jamás notaría que se convive con una pandemia. Los bares están abiertos. Los shoppings también. Las disquerías también. Las escuelas jamás cerraron. Las fronteras de Suecia están abiertas, mientras que sus vecinos las cerraron. El transporte público funciona normal y no se clausuraron las actividades deportivas. Nadie dispara en comercios con sensores de temperatura. El alcohol en gel es una rareza. Nunca bajó la orden de usar barbijo y por supuesto casi nadie lo utiliza. Tegnell aclara: “No quiere decir que no haya habido impacto en la economía, pero sí que hemos evitado perjudicar a la mayoría. Restringimos los sitios donde se puede reunir mucha gente, pero ¿qué riesgo de contagio hay en dónde una persona entra para comprar un disco?”.


Un fanático se tatúa en el brazo la cara de Anders Tegnell, el hombre que diseñó la manera en que Suecia se enfrentó al coronavirus.

En silencio, a medida que se convertía en la cara que todas las mañanas aparece en el noticiero, Tegnell diseñaba una estrategia “no de soluciones rápidas, sino un sistema de largo plazo para pasar muchos años conviviendo con la enfermedad, donde tiene un peso específico la imunidad que va adquiriendo la comunidad”. El arquitecto del modelo sueco dice que nunca apostó a la inmunidad de rebaño, pero admite que eso ayudará para que el brote de otoño, que ya se insinúa, sea mucho más leve en su país. “¿Qué protege hoy a ciudades como Copenhague?”, se pregunta.

A medida que vuelven a aumentar los casos en casi todos los países europeos, los contagios se hundieron durante el verano en Suecia. Ahora están un 90% por debajo de su pico de fines de junio y por debajo de Noruega y Dinamarca por primera vez en cinco meses. Tegnell siente que las cosas van como él quiere. Siempre sostuvo que no era oportuno hacer comparaciones. La serenata es larga, una frase que le hubiera quedado al dedillo.

"¿La combinación de su repentina fama y su apariencia de estar solo lo hace defender sus posiciones más obstinadamente?", le preguntó el Financial Times. "No, realmente no. Pero, por supuesto, significa que tengo que ser muy cauteloso con lo que estoy diciendo ”, respondió.

Tegnell cree que otros países han “sacrificado la ciencia por lo emocional y lo político”. No titubea. Ni siquiera cuando se dispararon las muertes de ancianos en geriátricos suecos y The New York Times calificó a Suecia como un “estado paria”. Su enfoque racional ha prevalecido. Tegnell sigue en la suya.

Fines de agosto. Se lo puede ver caminando por las calles de Estocolmo rumbo a su oficina monótona. Algunos días, lo acompaña su hija Emily, médica terapista, que le hace chistes por haberse convertido en un ícono del momento. En los medios halagan sus camisas manga corta en tonos pastel. Hay gente que lo para por la calle y le agradece. A veces con un beso.


Anders Tegnell, el rostro de la esperanza en Suecia. Foto AFP

Tegnell se formó en Holanda y en Estados Unidos. Trabajó con el ébola en Zaire. Aprendió sobre políticas de vacunación como enviado de la OMS a Laos. En 2020 tenía previsto instalar una agencia sanitaria en Somalía y enviar a los suecos algunas encuestas sobre calidad de vida. Pero terminó defendiendo su idea de que las escuelas sigan abiertas durante la pandemia. “Si tienes éxito allí en la escuela, tu vida será buena. Si fracasas, tu vida será mucho peor. Vas a vivir menos. Vas a ser más pobre. Eso, por supuesto, está en nuestra cabeza cuando se habla de cerrar escuelas. Un año perdido es un desastre. Las escuelas abiertas tienen que ver con mantener el bienestar de la población y la salud de los más chicos”, dice.

Más definiciones: “No creemos que sea viable tener este tipo de cierre, apertura y cierre drásticos. No se pueden abrir y cerrar escuelas. Y probablemente tampoco puedas abrir y cerrar restaurantes y cosas así muchas veces. Una o dos veces, sí, pero luego la gente se cansará mucho y las empresas sufrirán más que si las cierras por completo ”.

Tegnell decidió tempranamente que ante el primer síntoma, siempre que fuera manejable, la gente se quedara en su casa. Buscaba mantener en funcionamiento el sistema de atención médica y evitar que colapse por demanda innecesaria. Pero no dejaba de pensar en la salud pública en sentido amplio. Por eso decidió que los deportes infantiles continuaran, al igual que las lecciones de la escuela primaria, las sesiones de yoga, beber y comer con amigos y hacer compras. Sobre los barbijos, dice: "La adopción de barbijos es más una declaración que una medida. Son una solución fácil y desconfío profundamente de las soluciones fáciles para problemas complejos".

Lo acusaron de quitarle importancia a las muertes por Covid-19 (5.846 este domingo). Rechaza esa posibilidad. Pero dice que siempre tuvo en cuenta el daño a gran escala. Le pegaron fuerte en junio, cuando planteó que de haber tenido información previa sobre el comportamiento del virus, su estrategia hubiera sido otra. Pero ahora, pensando en frío, dice: "Aún así no creo que hubiera cambiado mucho".

Y otra vez nada contra corriente cuando habla sobre la vacuna. Advierte que si llega no será la "solución milagrosa". Y remata: “Una vez más, no me gustan mucho las soluciones fáciles para problemas complejos y creer que una vez que la vacuna esté aquí, podremos regresar y vivir como siempre lo hemos hecho, creo que es un mensaje peligroso para dar porque no va a ser tan fácil ".

domingo, 13 de septiembre de 2020

Introducción y resumen sobre inmunidad colectiva

Inmunidad colectiva al COVID-19: ¿dónde estamos?


Arnaud Fontanet y Simon Cauchemez

Nature Reviews Immunology (2020)





Detalles de métricas


La inmunidad colectiva es un concepto clave para el control de epidemias. Afirma que solo una parte de la población necesita ser inmune (superando una infección natural o mediante la vacunación) a un agente infeccioso para que deje de generar grandes brotes. Una pregunta clave en la actual pandemia de COVID-19 es cómo y cuándo se puede lograr la inmunidad colectiva y a qué costo.

La inmunidad colectiva se logra cuando una persona infectada en una población genera menos de un caso secundario en promedio, que corresponde al número de reproducción efectiva R (es decir, el número promedio de personas infectadas por un caso) que cae por debajo de 1 en ausencia de intervenciones . En una población en la que los individuos se mezclan de manera homogénea y son igualmente susceptibles y contagiosos, R = (1 − pC)(1 − pI)R0 (ecuación 1), donde pC es la reducción relativa en las tasas de transmisión debido a intervenciones no farmacéuticas; pI es la proporción de individuos inmunes; y R0 es el número de reproducción en ausencia de medidas de control en una población completamente susceptible. R0 puede variar entre poblaciones y con el tiempo, dependiendo de la naturaleza y el número de contactos entre individuos y factores ambientales potenciales. En ausencia de medidas de control (pC = 0), la condición para la inmunidad de grupo (R <1, donde  R = (1 − pI)R0 se logra por lo tanto cuando la proporción de individuos inmunes alcanza pI = 1 – 1/R0. Para el SARS-CoV-2, la mayoría de las estimaciones de R0 están en el rango de 2,5 a 4, sin un patrón geográfico claro. Para R0 = 3, según lo estimado para Francia1, se espera que el umbral de inmunidad colectiva para el SARS-CoV-2 requiera un 67% de inmunidad de la población. También se deduce de la ecuación 1 que, en ausencia de inmunidad colectiva, la intensidad de las medidas de distanciamiento social necesarias para controlar la transmisión disminuye a medida que aumenta la inmunidad de la población. Por ejemplo, para contener la propagación para R0 = 3, las tasas de transmisión deben reducirse en un 67% si la población es completamente susceptible, pero solo en un 50% si un tercio de la población ya es inmune.

Hay situaciones en las que se puede lograr la inmunidad colectiva antes de que la inmunidad de la población alcance  pI = 1 − 1/R0. Por ejemplo, si algunas personas tienen más probabilidades de infectarse y transmitir porque tienen más contactos, es probable que estos superpropagadores se infecten primero. Como resultado, la población de individuos susceptibles se agota rápidamente de estos superpropagadores y el ritmo de transmisión se ralentiza. Sin embargo, sigue siendo difícil cuantificar el impacto de este fenómeno en el contexto de COVID-19. Para R0 = 3, Britton et al.2 demostraron que, si tenemos en cuenta los patrones de contacto específicos de la edad (por ejemplo, los individuos> 80 años tienen sustancialmente menos contactos que los de 20 a 40 años), el umbral de inmunidad colectiva cae de 66,7% a 62,5%. Si asumimos además que el número de contactos varía sustancialmente entre individuos dentro del mismo grupo de edad, la inmunidad colectiva podría lograrse con solo el 50% de inmunidad de la población. Sin embargo, en este escenario, la desviación de la fórmula pI = 1 − 1/R0 solo se espera si siempre es el mismo conjunto de individuos los que son potenciales superpropagadores. Si la superpropagación es impulsada por eventos y no por individuos, o si las medidas de control reducen o modifican el conjunto de superpropagadores potenciales, puede haber un impacto limitado en la inmunidad de la manada. Otro factor que puede influir en un umbral de inmunidad colectiva más bajo para COVID-19 es el papel de los niños en la transmisión viral. Los informes preliminares encuentran que los niños, en particular los menores de 10 años, pueden ser menos susceptibles y contagiosos que los adultos3, en cuyo caso pueden omitirse parcialmente del cálculo de la inmunidad colectiva.

La inmunidad de la población se estima típicamente mediante encuestas transversales de muestras representativas utilizando pruebas serológicas que miden la inmunidad humoral. Las encuestas realizadas en países afectados al principio de la epidemia de COVID-19, como España e Italia, sugieren que la prevalencia de anticuerpos a nivel nacional varía entre el 1 y el 10%, con picos de alrededor del 10-15% en las zonas urbanas muy afectadas4. Curiosamente, esto es consistente con predicciones anteriores hechas por modelos matemáticos, utilizando recuentos de muertes reportados en estadísticas nacionales y estimaciones de la tasa de mortalidad por infección, es decir, la probabilidad de muerte dada la infección1,5. Algunos han argumentado que la inmunidad humoral no captura el espectro completo de la inmunidad protectora del SARS-CoV-2 y que la primera ola epidémica ha resultado en niveles más altos de inmunidad en la población que los medidos a través de encuestas transversales de anticuerpos. De hecho, se ha documentado la reactividad de las células T en ausencia de inmunidad humoral detectable entre los contactos de los pacientes6, aunque se desconocen la naturaleza protectora y la duración de la respuesta observada. Otra incógnita es si la inmunidad preexistente a los coronavirus del resfriado común puede proporcionar algún nivel de protección cruzada. Varios estudios informaron células T con reactividad cruzada en el 20-50% de los individuos sin experiencia previa con SARS-CoV-27. Sin embargo, queda por determinar si estas células T pueden prevenir la infección por SARS-CoV-2 o proteger contra enfermedades graves7. Los informes preliminares de encuestas en niños no muestran correlación entre infecciones pasadas por coronavirus estacionales y susceptibilidad a la infección por SARS-CoV-28. Claramente, no se evidenció inmunidad esterilizante mediante protección cruzada durante el brote de SARS-CoV-2 en el portaaviones Charles de Gaulle, donde el 70% de los marineros adultos jóvenes se infectaron antes de que la epidemia se detuviera9.
Teniendo en cuenta estas consideraciones, hay poca evidencia que sugiera que la propagación del SARS-CoV-2 podría detenerse naturalmente antes de que al menos el 50% de la población se haya vuelto inmune. Otra pregunta es qué se necesitaría para lograr el 50% de inmunidad de la población, dado que actualmente no sabemos cuánto tiempo dura la inmunidad adquirida de forma natural al SARS-CoV-2 (la inmunidad a los coronavirus estacionales suele ser relativamente corta), particularmente entre aquellos que tenían formas leves de la enfermedad, y si pueden ser necesarias varias rondas de reinfección antes de lograr una inmunidad sólida. La reinfección solo se ha documentado de manera concluyente en un número muy limitado de casos hasta ahora y no está claro si se trata de un fenómeno raro o puede llegar a ser una ocurrencia común. Asimismo, se desconoce cómo una infección previa afectaría el curso de la enfermedad en una reinfección y si algún nivel de inmunidad preexistente afectaría la diseminación y transmisibilidad viral.

Con las pandemias de gripe, la inmunidad colectiva generalmente se logra después de dos o tres oleadas epidémicas, cada una interrumpida por la estacionalidad típica del virus de la gripe y, más raramente, por intervenciones, con la ayuda de la protección cruzada a través de la inmunidad a los virus de la gripe encontrados anteriormente y las vacunas cuando están disponibles10 . Para COVID-19, que tiene una tasa de letalidad por infección estimada de 0.3 a 1.3% 1,5, el costo de alcanzar la inmunidad colectiva a través de la infección natural sería muy alto, especialmente en ausencia de un mejor manejo de los pacientes y sin una protección óptima de las personas en riesgo de complicaciones graves. Suponiendo un umbral optimista de inmunidad colectiva del 50%, para países como Francia y EE. UU., Esto se traduciría en 100.000–450.000 y 500.000–2.100.000 muertes, respectivamente. Los hombres, las personas mayores y las personas con comorbilidades se ven afectados de manera desproporcionada, con tasas de letalidad por infección del 3,3% para los mayores de 60 años y una mayor mortalidad en personas con diabetes, enfermedad cardíaca, enfermedad respiratoria crónica u obesidad. El impacto esperado sería sustancialmente menor en poblaciones más jóvenes.

Una vacuna eficaz presenta la forma más segura de alcanzar la inmunidad colectiva. En agosto de 2020, seis vacunas anti-SARS-CoV-2 han alcanzado los ensayos de fase III, por lo que es concebible que algunas estén disponibles a principios de 2021, aunque su seguridad y eficacia aún no se han establecido. Dado que la producción y entrega de una vacuna será inicialmente limitada, será importante priorizar las poblaciones altamente expuestas y aquellas en riesgo de morbilidad severa. Las vacunas son especialmente adecuadas para crear inmunidad colectiva porque su asignación puede dirigirse específicamente a poblaciones muy expuestas, como los trabajadores de la salud o las personas que tienen contacto frecuente con los clientes. Además, las muertes se pueden prevenir si se apunta primero a poblaciones muy vulnerables, aunque se espera que las vacunas no sean tan eficaces en las personas mayores. Por lo tanto, las vacunas pueden tener un impacto significativamente mayor en la reducción de la circulación viral que la inmunidad adquirida naturalmente, especialmente si resulta que la inmunidad protectora adquirida naturalmente requiere refuerzos a través de reinfecciones (si es necesario, las vacunas pueden reforzarse de forma rutinaria). Además, dado que hay un número cada vez mayor de informes de complicaciones a largo plazo incluso después del COVID-19 leve, es probable que las vacunas brinden una opción más segura para las personas que no están clasificadas en riesgo.

Para los países del hemisferio norte, las próximas temporadas de otoño e invierno serán desafiantes con la probable intensificación de la circulación viral, como se ha observado recientemente con el regreso de la estación fría en el hemisferio sur. En esta etapa, solo las intervenciones no farmacéuticas, como el distanciamiento social, el aislamiento del paciente, las mascarillas y la higiene de las manos, han demostrado ser eficaces para controlar la circulación del virus y, por lo tanto, deben aplicarse estrictamente. Los medicamentos antivirales potenciales que reducen la carga viral y por lo tanto disminuyen la transmisión, o las terapias que previenen complicaciones y muertes, pueden volverse importantes para el control de la epidemia en los próximos meses. Esto es hasta que las vacunas estén disponibles, lo que nos permitirá alcanzar la inmunidad colectiva de la manera más segura posible.


Referencias

  1. 1.
    Salje, H. et al. Estimating the burden of SARS-CoV-2 in France. Science 369, 208–211 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 
  2. 2.
    Britton, T., Ball, F. & Trapman, P. A mathematical model reveals the influence of population heterogeneity on herd immunity to SARS-CoV-2. Science 369, 846–849 (2020).
    CAS  PubMed  Article  Google Scholar 
  3. 3.
    Goldstein, E., Lipsitch, M. & Cevik, M. On the effect of age on the transmission of SARS-CoV-2 in households, schools and the community. Preprint at medRxiv https://doi.org/10.1101/2020.07.19.20157362 (2020).
    PubMed  PubMed Central  Article  Google Scholar 
  4. 4.
    Byambasuren, O. et al. Estimating the seroprevalence of SARS-CoV-2 infections: systematic review. Preprint at medRxiv https://doi.org/10.1101/2020.07.13.20153163 (2020).
    Article  Google Scholar 
  5. 5.
    Flaxman, S. et al. Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe. Nature 584, 257–261 (2020).
    CAS  PubMed  Article  Google Scholar 
  6. 6.
    Sekine, T. et al. Robust T cell immunity in convalescent individuals with asymptomatic or mild COVID-19. Cell https://doi.org/10.1016/j.cell.2020.08.017 (2020).
    PubMed Central  Article  Google Scholar 
  7. 7.
    Sette, A. & Crotty, S. Pre-existing immunity to SARS-CoV-2: the knowns and unknowns. Nat. Rev. Immunol. 20, 457–458 (2020).
    CAS  PubMed  Article  Google Scholar 
  8. 8.
    Sermet-Gaudelus, I. et al. Prior infection by seasonal coronaviruses does not prevent SARS-CoV-2 infection and associated multisystem inflammatory syndrome in children. Preprint at medRxiv https://doi.org/10.1101/2020.06.29.20142596 (2020).
    Article  Google Scholar 
  9. 9.
    Service de santé des armées. Investigation de l’épidémie de COVID-19 au sein du Groupe Aéronaval. Service de santé des armées https://www.defense.gouv.fr/content/download/583466/9938746/file/20200405_929_ARM_SSA_CESPA_rapport_epidemie_covid19_Gan_VEXP.pdf (2020).
  10. 10.
    Miller, M. A., Viboud, C., Balinska, M. & Simonsen, S. The signature features of influenza pandemics — implications for policy. N. Engl. J. Med. 360, 2595–2598 (2009).