Mostrando entradas con la etiqueta física. Mostrar todas las entradas
Mostrando entradas con la etiqueta física. Mostrar todas las entradas

miércoles, 18 de diciembre de 2019

Las grandes redes de colaboración científica mundial

Física, ciencias de la vida, genética: tres grandes jugadores y sus principales socios

La investigación es un juego global, pero incluso para los principales colaboradores, los socios más cercanos son principalmente locales.

Versión PDF




La infografía muestra los 25 principales socios de investigación de grandes colaboradores científicos líderes en 3 campos: física de alta energía, ciencias de la vida y genómica.

The Nature Index clasifica a las instituciones en los grandes campos de la ciencia por sus recuentos fraccionales (FC), en referencia a la parte de las contribuciones de sus autores afiliados, y los recuentos de artículos (AC) en 82 revistas de alta calidad. Las clasificaciones de la tabla son solo para artículos de alta afiliación, es decir, aquellos con autores de 10 o más instituciones principales separadas.



Nature Index 2019 Colaboración y gran ciencia

Las relaciones con los socios que se muestran son para los Institutos Nacionales de Salud de EE. UU. (NIH), que ocupa el segundo lugar entre las principales instituciones del mundo por producir grandes artículos de investigación científica en el campo de la oncología y la inmunología y el tercero en el campo de la genética; la Organización Europea para la Investigación Nuclear (CERN), en Suiza, que es el tercer mayor contribuyente a grandes artículos de ciencia en física y astronomía en el Índice de la Naturaleza; y BGI, una compañía de secuenciación del genoma que es el mayor contribuyente de China a la gran ciencia en genética. Esta infografía se basa en todos los artículos de colaboración de las tres instituciones identificadas, independientemente del número de afiliaciones.

Los 25 principales colaboradores de las tres instituciones centrales se muestran de acuerdo con su puntaje de colaboración conjunta (CS) con la institución central, derivado al sumar los FC * de los artículos con autores de ambas instituciones. CS determina el tamaño de las burbujas de las instituciones asociadas. El rango del 1 al 25 de su CS con la institución central se indica por su grosor de línea.

martes, 12 de marzo de 2019

Patrones estructurales que predicen la conductividad de las redes

Un nuevo marco para predecir la propagación espaciotemporal de la señal en redes complejas.

por Ingrid Fadelli, función de Phys.org


Un nuevo marco para predecir la propagación de señales espaciotemporales en redes complejas.




Clasificación del zoológico de patrones de propagación. La misma red muestra diferentes patrones de propagación bajo diferentes dinámicas, por ejemplo, dinámica epidémica, regulatoria o de población. Estos diversos patrones se condensan en tres regímenes: azul, rojo y verde, cada uno con su huella dactilar de propagación distintiva. Crédito: Barzel et al.

Estudios anteriores han encontrado que una variedad de redes complejas, desde sistemas biológicos hasta redes sociales, pueden exhibir características topológicas universales. Estas características universales, sin embargo, no siempre se traducen en una dinámica de sistema similar. El comportamiento dinámico de un sistema no se puede predecir solo a partir de la topología, sino que depende de la interacción de la topología de una red con los mecanismos dinámicos que determinan la relación entre sus nodos.

En otras palabras, los sistemas con estructuras muy similares pueden mostrar comportamientos dinámicos profundamente diferentes. Para lograr una mejor comprensión de estas observaciones, un equipo de investigadores de la Universidad de Bar-Ilan y el Instituto de Estadística de la India han desarrollado recientemente un marco teórico general que podría ayudar a vincular sistemáticamente la topología de una red con su resultado dinámico, particularmente en el contexto. de propagación de la señal.

"Las redes complejas están a nuestro alrededor, desde las redes sociales, a las biológicas, neuronales y de infraestructura", dijo a Phys.org Baruch Barzel, uno de los investigadores que llevaron a cabo el estudio. "En las últimas dos décadas, hemos aprendido que a pesar de esta diversidad de campos, la estructura de estas redes es altamente universal, con diferentes redes que comparten características estructurales comunes. Por ejemplo, prácticamente todas estas redes (sociales, biológicas y tecnológicas) son extremadamente heterogéneos, con una mayoría de nodos pequeños que coexisten con una minoría de centros altamente conectados ". [Es decir que la distribución nodal sigue una ley de potencia]

El marco desarrollado por Barzel y sus colegas vincula la topología de una red a la propagación espaciotemporal observada de señales perturbativas a través de ella. Esto, en última instancia, permite a los investigadores captar el papel de la red en la propagación de información local.

"La pregunta que nos intriga en el laboratorio es: ¿Estas estructuras similares también sugieren un comportamiento dinámico similar?" Dijo Barzel. "Por ejemplo, si Facebook y nuestras redes genéticas subcelulares están conectadas por hubs, ¿significa esto que mostrarán un comportamiento similar? En términos simples, ¿la universalidad en la estructura se traduce en universalidad en el comportamiento dinámico?"


Propagación entre comunidades. ¿Qué sucede cuando las señales se cruzan entre los módulos de red? Esto depende del régimen dinámico. Azul: desbordamiento ligeramente retrasado entre los módulos. Rojo: las señales permanecen durante un tiempo extremadamente largo dentro de un módulo, luego reaparecen en el módulo vecino después de un largo retraso. Verde: las señales se cruzan libremente entre los módulos. Crédito: Barzel et al.


Los análisis realizados por los investigadores sugieren que la relación entre la estructura de un sistema y su comportamiento dinámico se basa en el equilibrio. Por un lado, a pesar de las características estructurales compartidas, las diferentes redes pueden comportarse de maneras profundamente diferentes. Por otro lado, estos comportamientos diversos están arraigados en un conjunto universal de principios matemáticos, que podrían ayudar a clasificar los sistemas en clases universales de comportamiento potencial.

"En una analogía, puedes pensar en una roca que cae y un cometa en órbita excéntrica", explicó Barzel. "Representan fenómenos extremadamente diferentes, pero las leyes de Newton muestran que ambas se rigen por la misma ecuación fundamental de la gravedad. En nuestro caso, demostramos que los diversos comportamientos dinámicos observados en redes potencialmente similares pueden predecirse mediante un conjunto de principios universales. que rigen las leyes en las que la estructura de la red se traduce en dinámica de red ".

Barzel y sus colegas comenzaron tratando de definir la palabra "comportamiento". Su paradigma, que se basa en varios años de investigación, se basa en la noción de que, si bien una red mapea los patrones de conexión entre sus nodos, su comportamiento se puede transmitir como patrones de flujo de información, lo que se conoce como propagación de señales.

Por ejemplo, una epidemia que se propaga a través de vínculos sociales podría verse como información que se propaga en forma de virus. De manera similar, según su marco, un fallo local de un componente de potencia que finalmente resulta en un apagón importante podría verse como información realizada en forma de perturbaciones de carga, mientras que un gen que activa una vía genética representa información bioquímica que viaja entre componentes subcelulares .

"Si piensa en las señales (virus, perturbaciones de carga, activación genética, etc.) como autos abstractos, entonces la red es su mapa de ruta subyacente", dijo Barzel. "Un mapa muy complejo y heterogéneo, de hecho, que admite la propagación de señales entre un nodo de origen y su objetivo. Ahora, todos sabemos que la misma red de carreteras puede exhibir patrones de tráfico altamente distintivos en diferentes condiciones. En analogía, la misma red puede llevar a reglas muy diferentes para la propagación de señales ".



La distancia temporal universal  (j → i). La 'red GPS' diseñada por los investigadores ayuda a reorganizar el 'zoológico' representado en la Imagen 1 en una propagación predecible y bien organizada. Crédito: Barzel et al.

Según Barzel, en una analogía que describe las señales como automóviles y las redes como mapas de carreteras, su marco podría verse como una "red GPS". Este "sistema GPS" puede predecir cuánto tiempo tomarán las señales para viajar a través de la red (por ejemplo, cuánto tiempo tomaría para que el virus infecte a las personas en un grupo social, para que ocurra un apagón después de una falla de alimentación inicial). para un gen para activar una ruta genética).

"Un GPS convierte una red de carreteras estática en una predicción dinámica de los tiempos de viaje dividiéndolos en segmentos y estimando el tiempo requerido para fluir a través de cada segmento", explicó Barzel. "Hacemos lo mismo aquí, utilizando herramientas matemáticas desarrolladas en nuestro laboratorio para estimar el tiempo de retraso de la señal en cada componente de la red. Al unir el rompecabezas, podemos predecir la propagación espaciotemporal a través de toda la red".

Teniendo en cuenta varios modelos dinámicos no lineales, los investigadores encontraron que las reglas de propagación de señales se pueden clasificar en tres regímenes dinámicos altamente distintivos. Estos tres regímenes se caracterizan por diferentes interacciones entre rutas de red, distribuciones de grados y dinámicas de interacción entre nodos de red.

"La física estadística es un campo bien establecido que nos ayuda a mapear cómo interactúan las partículas microscópicas. Por ejemplo, entre las moléculas de agua, conducen al comportamiento macroscópico observado del sistema, por ejemplo, fluido, transparente, etc.", dijo Barzel. "Nuestro paradigma lleva estas herramientas a un nivel completamente nuevo: las partículas son genes, neuronas, enrutadores o individuos humanos, y sus interacciones son en forma de propagación de señales. Los sistemas impulsados ​​por tales partículas / interacciones a menudo se consideran como no-sciency. no pueden predecir ni observar su comportamiento; son solo un desorden aleatorio de una mezcla no organizada. En contraste, lo que nuestro trabajo (y el de otros) está exponiendo es que tal física estadística de sistemas sociales, biológicos o tecnológicos, es de hecho alcanzable, y que detrás de sus observaciones aparentemente diversas e impredecibles se encuentra una profunda universalidad que puede ayudarnos a predecir su comportamiento ".

El estudio realizado por Barzel y sus colegas ofrece un ejemplo fascinante de cómo los marcos físicos y matemáticos podrían ayudarnos a comprender mejor los sistemas complejos de una naturaleza marcadamente diferente. La clasificación de los mecanismos de interacción del sistema en los tres regímenes principales que descubrieron podría permitir a los investigadores traducir sistemáticamente la topología de un sistema en patrones dinámicos de propagación de información, prediciendo en última instancia los patrones de comportamiento de una variedad de sistemas.

"Nuestro lema es: entender, predecir, influir", dijo Barzel. "El siguiente paso natural en nuestra investigación es la 'influencia'. ¿Podemos, por ejemplo, usar nuestras predicciones sobre la propagación para mitigar una propagación no deseada, como una epidemia o una cascada de fallas en el suministro eléctrico? Por ejemplo, utilizando intervenciones cronometradas estratégicamente en las que apague, digamos, el 15 por ciento, de los componentes para evitar la sobrecarga del 85 por ciento restante. Nuestro GPS puede ayudarnos a proyectar la propagación y, por lo tanto, diseñar un esquema de intervención inteligente ".


Léalo completo en: How community structure affects the resilience of a network
Más información: Chittaranjan Hens et al. Spatiotemporal signal propagation in complex networks, Nature Physics (2019). DOI: 10.1038/s41567-018-0409-0. https://www.nature.com/articles/s41567-018-0409-0
www.barzellab.com/ Referencia de revista: Nature Physics


sábado, 26 de mayo de 2018

Jerarquía y superposición de comunidades en redes complejas

Detectar la estructura sobrepuesta y jerárquica de comunidades en complejas redes

Andrea Lancichinetti, Santo Fortunato y János Kertész
Publicado el 10 de marzo de 2009 • IOP Publishing and Deutsche Physikalische Gesellschaft
New Journal of Physics


Resumen
Muchas redes en la naturaleza, la sociedad y la tecnología se caracterizan por un nivel de organización mesoscópico, con grupos de nodos que forman unidades estrechamente conectadas, llamadas comunidades o módulos, que están débilmente vinculadas entre sí. Descubrir esta estructura de comunidad es uno de los problemas más importantes en el campo de las redes complejas. Las redes a menudo muestran una organización jerárquica, con comunidades integradas en otras comunidades; además, los nodos se pueden compartir entre diferentes comunidades. Aquí, presentamos el primer algoritmo que encuentra comunidades superpuestas y la estructura jerárquica. El método se basa en la optimización local de una función de aptitud. La estructura de la comunidad se revela por los picos en el histograma de la aptitud física. La resolución puede ajustarse mediante un parámetro que permita investigar los diferentes niveles jerárquicos de la organización. Las pruebas en redes reales y artificiales dan excelentes resultados.

1. Introducción

El estudio de las redes como el 'andamio de la complejidad' ha demostrado ser muy exitoso para comprender tanto la estructura como la función de muchos sistemas naturales y artificiales [1] - [5]. Una característica común de las redes complejas es la estructura de la comunidad [6] - [9], es decir, la existencia de grupos de nodos tales que los nodos dentro de un grupo están mucho más conectados entre sí que con el resto de la red. Los módulos o las comunidades reflejan las relaciones topológicas entre los elementos del sistema subyacente y representan las entidades funcionales. Por ejemplo, las comunidades pueden ser grupos de personas relacionadas en las redes sociales [6, 10, 11], conjuntos de páginas web que tratan el mismo tema [12], categorías taxonómicas en redes tróficas [13, 14], rutas bioquímicas en redes metabólicas [15] - [17], etc. Por lo tanto, la identificación de las comunidades es de importancia central, pero sigue siendo una tarea formidable.
La solución se ve obstaculizada por el hecho de que la organización de redes en el nivel modular "mesoscópico" generalmente es altamente no trivial, por al menos dos razones. En primer lugar, a menudo existe toda una jerarquía de módulos, porque las comunidades están anidadas: las comunidades pequeñas construyen las más grandes, que a su vez se agrupan para formar otras aún más grandes, etc. Un ejemplo podría ser la organización de una empresa grande, y ha sido argumentó que la complejidad de la vida también se puede asignar a una jerarquía de redes [18]. La forma jerárquica de organización puede ser muy eficiente, y los módulos se encargan de las funciones específicas del sistema [19]. En presencia de una jerarquía, el concepto de estructura de la comunidad se vuelve más rico y exige un método que sea capaz de detectar todos los niveles modulares, no solo uno. La agrupación jerárquica es una técnica bien conocida en el análisis de redes sociales [20, 21], la biología [22] y las finanzas [23]. A partir de una partición en la que cada nodo es su propia comunidad, o todos los nodos están en la misma comunidad, se fusionan o dividen los clústeres según una medida topológica de similitud entre los nodos. De esta manera, uno construye un árbol jerárquico de particiones, llamado dendrograma. Aunque este método produce naturalmente una jerarquía de particiones, nada se conoce a priori sobre sus cualidades. La modularidad de Newman y Girvan [24] es una medida de la calidad de una partición, pero puede identificar una única partición, es decir, la que corresponde al valor más grande de la medida. Recientemente, los académicos comenzaron a enfocarse en el problema de identificar jerarquías significativas [19, 25].
Una segunda dificultad es causada por el hecho de que los nodos a menudo pertenecen a más de un módulo, lo que resulta en la superposición de comunidades [17], [26] - [29]. Por ejemplo, las personas pertenecen a diferentes comunidades sociales, dependiendo de sus familias, amigos, profesiones, pasatiempos, etc. Los nodos que pertenecen a más de una comunidad son un problema para los métodos estándar y reducen la calidad de los módulos detectados. Además, esto oculta información importante, y a menudo conduce a clasificaciones erróneas. El problema de la superposición de las comunidades se expuso en [17], donde también se ofreció una solución. El método propuesto se basa en la percolación de la camarilla: una k-clique (un subgrafo completo de k nodos) se extiende a través de la red a través de otras camarillas con k-1 nodos comunes. De esta forma, se puede llegar a un conjunto de nodos, que se identifica como una comunidad. Un nodo puede participar en más de una de esas unidades, por lo tanto, las superposiciones ocurren naturalmente. El método, sin embargo, no es adecuado para la detección de la estructura jerárquica, ya que una vez que se especifica el tamaño k de la camarilla, en su mayoría se puede recuperar una sola estructura modular. En la figura 1, mostramos distintas redes con estructura jerárquica y comunidades superpuestas, aunque debe enfatizarse que estas características a menudo ocurren simultáneamente.




Figura 1. Parte superior: una red con una estructura jerárquica. Cada uno de los cuatro grupos grandes está formado por 128 nodos y tiene una subdivisión interna en cuatro clústeres con 32 nodos. Abajo: comunidades superpuestas. Los nodos verdes están relacionados topológicamente con más grupos.

Con el fin de proporcionar la información más exhaustiva sobre la estructura modular de un grafo, un buen algoritmo debería ser capaz de detectar tanto comunidades superpuestas como jerarquías entre ellas. En este documento, presentamos un marco que cumple estas dos demandas. El método realiza una exploración local de la red, buscando la comunidad natural de cada nodo. Durante el procedimiento, los nodos se pueden visitar muchas veces, sin importar si se han asignado a una comunidad o no. De esta manera, las comunidades superpuestas se recuperan naturalmente. La variación de un parámetro de resolución, que determina el tamaño promedio de las comunidades, permite explorar todos los niveles jerárquicos de la red.

2. El método

La suposición básica detrás de nuestro algoritmo es que las comunidades son esencialmente estructuras locales, que involucran los nodos que pertenecen a los módulos mismos y como mucho un vecindario extendido de ellos. Esto es ciertamente plausible para redes grandes, donde cada nodo no depende de la mayoría de sus pares. En el grafo de enlace de la WWW, por ejemplo, uno ni siquiera tiene una percepción de qué tan grande es la red, y las comunidades temáticas se forman basándose solo en información parcial sobre el grafo. Del mismo modo, las comunidades sociales son estructuras locales sin ninguna referencia a la humanidad como un todo.
Aquí, una comunidad es un subgrafo identificado por la maximización de una propiedad o aptitud de sus nodos. Hemos probado varias opciones para la forma de la condición física y obtuvimos los mejores resultados con la expresión simple



dónde  y  son los grados totales internos y externos de los nodos del módulo , y α es un parámetro positivo de valor real, que controla el tamaño de las comunidades. El grado interno de un módulo equivale al doble del número de enlaces internos del módulo. El grado externo es el número de enlaces que unen a cada miembro del módulo con el resto del grafo. El objetivo de este documento es determinar un subgrafo que comience en el nodo A de manera que la inclusión de un nuevo nodo o la eliminación de un nodo del subgrafo disminuya. Llamamos a este subgrafo la comunidad natural del nodo A. Esto equivale a determinar los máximos locales para la función de aptitud para un α determinado. El máximo verdadero para cada nodo corresponde trivialmente a toda la red, porque en este caso y el valor de es el más grande que la medida puede alcanzar para un α determinado. La idea de detectar comunidades mediante una optimización local de alguna métrica ya se aplicó anteriormente [26, 27, 30, 31].

Es útil introducir el concepto de aptitud del nodo. Dada una función de aptitud, la aptitud de un nodo A con respecto a un subgrafo , se define como la variación de la aptitud del subgrafo  con y sin el nodo A, es decir.

Equation (2)

En la ecuación (2), el símbolo () indica el subgrafo obtenido del módulo  con el nodo A dentro (afuera).

La comunidad natural del nodo A se identifica con el siguiente procedimiento. Supongamos que hemos cubierto un subgrafo  que incluye el nodo A. Inicialmente,  se identifica con el nodo A (). Cada iteración del algoritmo consta de los siguientes pasos:

La comunidad natural del nodo A se identifica con el siguiente procedimiento. Supongamos que hemos cubierto un subgrafo que incluye el nodo A. Inicialmente, se identifica con el nodo A (). Cada iteración del algoritmo consta de los siguientes pasos:

1. un bucle se realiza sobre todos los nodos vecinos de  no incluidos en ;
2. se agrega el vecino con la aptitud más grande a , produciendo un subgrafo  más grande;
3. la aptitud de cada nodo de  es recalculada;
4. si un nodo tiene una aptitud física negativa, se elimina de este , produciendo un nuevo subgrafo ;
5. si ocurre 4, repita desde 3, de lo contrario repita desde 1 para el subgrafo .

El proceso se detiene cuando los nodos examinados en el paso 1 tienen una aptitud física negativa (figura 2). Este procedimiento corresponde a una especie de optimización codiciosa de la función de aptitud, ya que en cada movimiento se busca el mayor aumento posible. Otras recetas pueden ser adoptadas también. Por ejemplo, uno podría retroceder los nodos con una aptitud física negativa solo cuando el clúster deja de crecer y / o incluir en el clúster el primer nodo vecino que produce un aumento de la aptitud. Dichas recetas pueden conducir a clústeres de acondicionamiento físico más altos en un tiempo más corto, y merecen investigaciones en profundidad, que dejamos para el trabajo futuro.

Figura 2. Ejemplo esquemático de comunidad natural para un nodo (punto azul celeste en la figura) según nuestra definición. Los nodos azules son los otros miembros del grupo y tienen una aptitud física positiva dentro del grupo, mientras que los nodos rojos tienen una aptitud física negativa con respecto al grupo.

Definimos una cubierta del grafo como un conjunto de clústeres de modo que cada nodo se asigna a al menos un clúster. Esta es una extensión del concepto tradicional de partición de grafos (en la cual cada nodo pertenece a un solo grupo), para tener en cuenta posibles comunidades superpuestas. En nuestro caso, detectar una cobertura equivale a descubrir la comunidad natural de cada nodo del grafo que se estudia. La forma directa de lograr esto es repetir el procedimiento anterior para cada nodo individual. Esto es, sin embargo, computacionalmente costoso. Las comunidades naturales de muchos nodos a menudo coinciden, por lo que la mayor parte del tiempo de la computadora se utiliza para redescubrir los mismos módulos una y otra vez. Una salida económica se puede resumir de la siguiente manera:

1. elige un nodo A al azar;
2. detectar la comunidad natural del nodo A;
3. elegir al azar un nodo B aún no asignado a ningún grupo;
4. detectar la comunidad natural del nodo B, explorando todos los nodos independientemente de su posible pertenencia a otros grupos;
5. repetir desde 3.

El algoritmo se detiene cuando todos los nodos han sido asignados a al menos un grupo. Nuestra receta está justificada por el siguiente argumento. Los nodos de cada comunidad se superponen con otras comunidades o no. La comunidad fue explorada alrededor de un nodo específico; si uno elige cualquiera de los otros nodos, uno recuperaría la misma comunidad o una de las posibles comunidades superpuestas. Pero este último también se puede encontrar si uno parte de nodos que se encuentran fuera de la comunidad y no se superponen con él. De esta forma, uno debería recuperar todos los módulos sin necesidad de comenzar desde cada nodo. Al mismo tiempo, se cubrirán nodos superpuestos durante la construcción de cada comunidad a la que pertenecen, ya que es posible incluir nodos ya asignados a otros módulos. Extensas pruebas numéricas muestran que la pérdida de precisión es mínima si se procede como sugerimos en lugar de encontrar la comunidad natural de todos los nodos. Observamos que el procedimiento tiene cierto grado de estocasticidad, debido a la elección aleatoria de las semillas de nodo de las cuales las comunidades están cerradas. Este problema se analiza en el apéndice A.

El parámetro α sintoniza la resolución del método. La fijación de α significa establecer la escala a la que estamos mirando la red. Los valores grandes de α producen comunidades muy pequeñas, los valores pequeños en cambio proporcionan módulos grandes. Si α es lo suficientemente pequeño, todos los nodos terminan en el mismo clúster, la red misma. Hemos encontrado que, en la mayoría de los casos, para α <0.5, solo hay una comunidad; para α> 2, uno recupera las comunidades más pequeñas. Una elección natural es α = 1, ya que es la relación entre el grado externo y el grado total de la comunidad. Esto corresponde a la llamada definición débil de comunidad introducida por Radicchi et al [32]. Encontramos que, en la mayoría de los casos, la cobertura encontrada para α = 1 es relevante, por lo que brinda información útil sobre la estructura de la comunidad real del grafo en cuestión. Mantener un valor específico de α significa restringir la resolución del método, al igual que sucede al optimizar la modularidad de Newman-Girvan [33, 34]. Sin embargo, no se puede saber a priori qué tan grandes son las comunidades, ya que esta es una de las incógnitas del problema, por lo que es necesario comparar las coberturas obtenidas a diferentes escalas.

Al variar el parámetro de resolución uno explora toda la jerarquía de las cubiertas del grafo, desde toda la red hasta los nodos individuales, lo que lleva a la información más completa sobre la estructura de la comunidad de la red. Sin embargo, el método también proporciona una forma natural de clasificar las coberturas según su relevancia. Es razonable pensar que una buena cobertura de la red es estable, es decir, que solo se puede destruir cambiando sensiblemente el valor de α para el que se recuperó. Cada portada se entrega para α que se encuentra dentro de cierto rango. Una cobertura estable estaría indicada por un amplio rango de α. Lo que necesitamos es un índice cuantitativo para etiquetar una cobertura . Adoptaremos el valor promedio  de la aptitud de sus comunidades, es decir

Equation (3)

donde nc es el número de módulos. La aptitud debe calcularse para un valor fijo de α (elegimos α = 1 por simplicidad), de modo que se puedan reconocer cubiertas idénticas (diferentes) por valores iguales (diferentes). Obtendremos el histograma de los valores  de las cubiertas obtenidas para diferentes valores α: las cubiertas estables se revelan mediante picos pronunciados en el histograma de aptitud física resultante. Cuanto más alto es el pico, más estable es la cobertura. De esta manera, las cubiertas se pueden clasificar según su frecuencia. Un concepto similar de estabilidad ha sido adoptado en un estudio reciente, donde se introdujo un parámetro de resolución en la modularidad de Newman-Girvan [35].

Una pregunta natural es cómo combinar comunidades jerárquicas con comunidades superpuestas, ya que el significado habitual de la jerarquía parece incompatible con la existencia de nodos compartidos entre las comunidades. Sin embargo, esto es solo aparente y la misma definición de particiones jerárquicas puede extenderse al caso de comunidades superpuestas. Decimos que hay dos coberturas  y  están ordenados jerárquicamente, con un número  superior a , si todos los nodos de cada comunidad de  participan (total o parcialmente) en una sola comunidad de cobertura .

Es difícil estimar la complejidad computacional del algoritmo, ya que depende del tamaño de las comunidades y del alcance de sus superposiciones, que a su vez depende en gran medida de la red específica que se estudia junto con el valor del parámetro α. El tiempo para construir una comunidad con nodos s se escala aproximadamente como O(s2), debido a los pasos de retroceso. Por lo tanto, una estimación aproximada de la complejidad para un valor α fijo es O(nclangs2rang), donde nc es el número de módulos de la cubierta entregada y langs2rang el segundo momento del tamaño de la comunidad. El cuadrado proviene del ciclo de todos los nodos de una comunidad para verificar su estado físico después de cada movimiento. La complejidad del caso más desfavorable es O(n2), donde n es la cantidad de nodos de la red cuando las comunidades son de un tamaño comparable con n. En general, este no es el caso, por lo que en la mayoría de las aplicaciones el algoritmo se ejecuta mucho más rápido y casi linealmente cuando las comunidades son pequeñas. La situación se muestra en la figura 3, donde trazamos el tiempo para ejecutar el algoritmo hasta su finalización para dos valores α diferentes como una función del número de nodos para los grafos Erdös-Rényi con un grado promedio de 10: la complejidad va desde la cuadrática a lineal. La complejidad total del algoritmo para realizar el análisis completo de una red también depende del número de valores α necesarios para resolver su estructura jerárquica. Cuanto mejor se muestre la jerarquía de cubiertas, mayor será el número de valores α utilizados para ejecutar el algoritmo. Si la red tiene una estructura jerárquica, como sucede a menudo en sistemas reales, el número de cubiertas crece como log n. En este caso, el número de diferentes valores α necesarios para resolver la jerarquía también es del orden de log n y el análisis completo puede llevarse a cabo muy rápidamente. Notamos que cada iteración del algoritmo para un α dado es independiente de los otros. Entonces, el cálculo se puede paralelizar trivialmente ejecutando diferentes valores α en cada computadora. Si no se dispone de grandes recursos informáticos, una manera económica de proceder podría ser comenzar desde un gran valor α, para el cual el algoritmo se ejecuta hasta su finalización en un tiempo muy corto, y usar la cubierta final como configuración inicial para una ejecución en un valor α ligeramente menor. Dado que la cubierta correspondiente es similar a la inicial, la segunda carrera también se completará en un tiempo corto y uno puede repetir el procedimiento hasta la izquierda del rango de α.


Figura 3. Complejidad computacional del algoritmo. Las dos curvas muestran cómo el tiempo para ejecutar el algoritmo se escala con el tamaño del grafo para redes Erdös-Rényi con un grado promedio de 10 para α = 0.9 y 1.6, respectivamente. La complejidad varía desde cuadrático para α = 0.9, para el cual las comunidades son considerables, hasta lineal para α = 1.6, para el cual las comunidades son pequeñas.

Concluimos que para las redes jerárquicas nuestro procedimiento tiene una complejidad computacional del peor caso de O(n2log n). Observamos que, si bien es cierto que actualmente varios algoritmos tienen una complejidad menor, ninguno de ellos es capaz de llevar a cabo un análisis completo de la estructura jerárquica de la comunidad, ya que generalmente ofrecen una única partición. Por lo tanto, una comparación justa no es posible. Además, otras recetas para la optimización local de nuestra u otras funciones de acondicionamiento físico pueden reducir considerablemente la complejidad computacional del algoritmo, lo que parece una prometedora dirección de investigación para el futuro.

3. Resultados

Probamos ampliamente nuestro método en redes artificiales con una estructura de comunidad jerárquica incorporada. Adoptamos una referencia similar a la propuesta recientemente por Arenas et al [36, 37], que es una simple extensión de la referencia clásica propuesta por Girvan y Newman [6]. Hay 512 nodos, organizados en 16 grupos de 32 nodos cada uno. Los 16 grupos están ordenados en cuatro supergrupos. Cada nodo tiene un promedio de enlaces k1 con los 31 socios de su grupo y enlaces k2 con los 96 nodos de otros tres grupos dentro del mismo supergrupo. Además, cada nodo tiene un número k3 de enlaces con el resto de la red. De esta forma, surgen dos niveles jerárquicos: uno que consta de los 16 grupos pequeños y uno de los supergrupos con 128 nodos cada uno (la figura 1 (arriba) es un ejemplo). El grado de mezcla de los cuatro supergrupos se expresa mediante el parámetro k3 que sintonizamos libremente. En principio, también podríamos sintonizar la mezcla de las pequeñas comunidades, variando la relación k1 / k2, pero preferimos establecer k1 = k2 = 16, de modo que las microcomunidades sean "borrosas", es decir, bien mezcladas entre sí. , y plantear una dura prueba para nuestro método.

Tenemos que verificar si la jerarquía incorporada se recupera a través del algoritmo. Esto, en general, depende del parámetro k3. Por lo tanto, consideramos diferentes valores de k3: para cada valor, construimos 100 realizaciones de la red. Para comparar la estructura modular incorporada con la proporcionada por el algoritmo, adoptamos la información mutua normalizada, una medida de similitud tomada de la teoría de la información, que ha demostrado ser confiable [38]. La extensión de la medida a la superposición de comunidades no es trivial y existen varias alternativas. Nuestra extensión se analiza en el apéndice B. En la figura 4, trazamos el valor promedio de la información mutua normalizada como una función de k3 para los dos niveles jerárquicos. Vemos que en ambos casos los resultados son muy buenos. La cobertura en los cuatro supergrupos o macrocomunidades está identificada correctamente para k3 <24, con muy pocas excepciones, y el algoritmo comienza a fallar solo cuando k3 ~ 32, es decir, cuando cada nodo tiene 32 enlaces dentro y 32 fuera de su macro- comunidad, que luego se mezcla bien con los demás. El rendimiento también es muy bueno para el nivel jerárquico inferior: los módulos siempre están bien mezclados entre sí, ya que k1 = k2 = 16 para cualquier valor de k3, por lo que es notable que la estructura modular resultante encontrada por el algoritmo esté todavía tan cerca de la estructura modular incorporada, hasta k3 ~ 32. El principal problema con este tipo de pruebas es que no se cuenta con información independiente sobre las cubiertas, por lo tanto, solo se puede juzgar si son razonables o no. Afortunadamente, para algunas redes, las cubiertas se identificaron con información especial sobre el sistema y / o su historial. En la figura 5, mostramos los histogramas de fitness correspondientes a algunas de estas redes, a menudo utilizados para probar algoritmos: el club de karate Zachary [39] (panel superior izquierdo), la red de delfines de Lusseau [40] (panel superior derecho) y el red de equipos de fútbol americano universitario [6] (panel inferior izquierdo). La red social de miembros del club de karate estudiada por el sociólogo Wayne Zachary se ha convertido en un punto de referencia para todos los métodos de detección comunitaria. La red consta de 34 nodos, que se separaron en dos grupos distintos debido a un contraste entre uno de los instructores y el administrador del club. La pregunta es si uno es capaz de detectar la fisión social de la red. La segunda red representa las interacciones sociales de los delfines mulares que viven en Doubtful Sound, Nueva Zelanda. La red fue estudiada por el biólogo David Lusseau, quien dividió los delfines en dos grupos según su edad. El tercer ejemplo es la red de equipos de fútbol americano universitario. Aquí, hay 115 nodos, que representan a los equipos, y dos nodos están conectados si sus equipos juegan uno contra el otro. Los equipos están divididos en 12 conferencias. Los juegos entre equipos en la misma conferencia son más frecuentes que los juegos entre equipos de diferentes conferencias, por lo que uno tiene una cobertura natural donde las comunidades corresponden a las conferencias.


Figura 4. Prueba de la precisión de nuestro método en un punto de referencia jerárquico. La información mutua normalizada se usa para comparar la cobertura encontrada por el algoritmo con la cobertura natural de la red en cada nivel. En el nivel superior (círculos), las comunidades son cuatro clusters, cada uno de los cuales incluye 32 nodos, para un total de 128 nodos por clúster. Nuestro método encuentra los grupos correctos siempre que no estén bien mezclados entre sí. En el nivel inferior (cuadrados), las comunidades son 16 grupos de 32 nodos cada uno. El método funciona muy bien, teniendo en cuenta que cada nodo tiene tantos enlaces dentro como fuera de cada microcomunidad, para cualquier valor de k3. La línea vertical punteada marca las configuraciones de grafo para las cuales el número de enlaces de cada nodo dentro de su macrocomunidad es igual a la cantidad de enlaces que conectan el nodo con las otras tres macrocomunidades.


Figura 5. Análisis de redes reales. Los histogramas de aptitud corresponden al club de karate de Zachary (panel superior izquierdo), la red de delfines de Lusseau (panel superior derecho) y la red de equipos de fútbol americano universitario (panel inferior izquierdo). Los picos más altos indican las mejores coberturas, que coinciden con las coberturas naturales de los grafos, a excepción del club de karate de Zachary, donde corresponde a la misma división en cuatro clústers encontrados a través de la optimización de la modularidad. Sin embargo, la cobertura social en dos de las redes es la tercera tapa más relevante. En el panel inferior derecho, mostramos el histograma de fitness para un grafo aleatorio Erdös-Rényi con 100 nodos y el mismo grado promedio que la red de equipos de fútbol americano universitario: no hay una estructura visible, como se esperaba.

Los picos pronunciados en los histogramas de la figura 5 muestran que estas redes sí tienen estructura de comunidad. Para la red de Zachary, encontramos que la cubierta más estable consiste en cuatro clusters. Incluso si esto no es lo que a uno le gustaría recuperar, hacemos hincapié en que esta cobertura a menudo se encuentra por otros métodos, como la optimización de la modularidad, que indica que es topológicamente significativo. Pero nuestro método puede funcionar mejor: la división social en dos grupos (figura 6 (a)) resulta ser un nivel jerárquico más alto, dado por una fusión por pares de las cuatro comunidades de la cobertura principal. Curiosamente, encontramos que los dos grupos se superponen y comparten algunos nodos. Para la red de delfines, el pico más alto corresponde a la subdivisión de Lusseau de la población de animales en dos comunidades, con cierta superposición entre los dos grupos (figura 6 (b)). De manera similar, el pico más alto en la figura 5 (panel inferior izquierdo) corresponde a la partición natural de los equipos en conferencias.


Figura 6. (a) club de karate de Zachary. Mostramos los niveles jerárquicos correspondientes a la cobertura en dos grupos (0,76 <α <0,84). Los nodos 3, 9, 10, 14 y 31 se comparten entre los dos grupos: dichos nodos a menudo se clasifican erróneamente mediante algoritmos tradicionales. Los nodos superpuestos reflejan la fisión social observada por Zachary, ilustrada por los cuadrados y los círculos en la figura. (b) La red de delfines mulares de Lusseau. La mejor cobertura en dos conglomerados que encontramos (0,77 <α <0,82) concuerda con la separación observada por Lusseau (cuadrados y círculos en la figura). Los nodos 8, 20, 29, 31 y 40 se comparten entre los dos grupos.

Para verificar qué tan bueno es nuestro algoritmo en comparación con otros métodos, hemos analizado el karate, los delfines y las redes de fútbol americano universitario con el método de filtración de camarilla (CPM) de Palla et al [17]. Los valores de la información mutua normalizada de las coberturas encontradas por el algoritmo con respecto a las coberturas reales son 0.690 (nuestro método) y 0.170 (CPM) para el club de karate, 0.781 (nuestro método) y 0.254 (CPM) para los delfines. red, y 0.754 (nuestro método) y 0.697 (CPM) para la red de fútbol americano universitario. Por lo tanto, nuestro método es superior al CPM en estos casos. Por otro lado, el CPM funciona mejor para redes con muchas camarillas. Un ejemplo está representado por la palabra asociación de red construida en la Asociación de Normas Libres de la Universidad del Sur de la Florida [41], analizada en [17]. El CPM encuentra grupos de palabras que corresponden a categorías bien definidas, mientras que con nuestro método las categorías son más mixtas. Una razón importante de esta discrepancia es que nuestro método recupera nodos superpuestos que generalmente se encuentran en el límite entre comunidades, mientras que en la red de asociación de palabras a menudo son nodos centrales de una comunidad. Por ejemplo, la palabra "color" es el eje central de la comunidad de colores, pero también pertenece a otras categorías como "astronomía" y "luz".

Realizamos pruebas en muchos otros sistemas reales, incluidas redes de interacción de proteínas, redes de colaboración científica y otras redes sociales. En todos los casos, encontramos portadas razonables. Por otro lado, encontramos que los grafos aleatorios no tienen una estructura de comunidad natural, ya que las cubiertas son inestables (figura 5 (panel inferior derecho)). Esto es notable, ya que se sabe que otros enfoques también pueden encontrar cubiertas en grafos aleatorios [42], un problema que desencadenó un debate en curso sobre cuándo una portada es de hecho relevante [43].

En la figura 7, mostramos cómo el grado de superposición entre las comunidades depende del parámetro de resolución α, para tres redes reales. A partir de la figura, no es posible inferir ninguna dependencia sistemática de la superposición en α, el patrón depende en gran medida de la topología de grafo específica.


Figura 7. Fracción de nodos superpuestos como una función de α para las tres redes reales discutidas en la figura 5: el club de karate de Zachary y las redes de delfines y equipos de fútbol americano. No existe un patrón único, la extensión de la superposición no muestra una variación sistemática con α.

Concluimos la sección con un análisis de las propiedades estadísticas de la estructura de la comunidad en grafos. La Figura 8 muestra la distribución de tamaños de comunidad para una muestra del grafo de enlace WWW, correspondiente al subconjunto de páginas web dentro del dominio .gov. Analizamos el componente conectado más grande del grafo, que consta de 774 908 nodos y 4 711 340 enlaces. La figura hace referencia a la cubierta encontrada para α = 1, que se identificó en menos de 40 h de tiempo de CPU en una PC pequeña. La distribución del tamaño de la comunidad está sesgada, con una cola que sigue una ley de poder con el exponente 2.2 (1). El resultado es consistente con los análisis previos de distribuciones de tamaño de la comunidad en grafos grandes [8, 17, 44, 45], aunque este es el primer resultado relacionado con la WWW. Hacemos hincapié en que no hemos realizado un análisis completo de esta red, ya que requeriría una gran cantidad de procesadores para llevar a cabo el alto número de ejecuciones en diferentes valores α que son necesarios para un análisis confiable. Por lo tanto, la distribución en la figura 8 no corresponde necesariamente a la cobertura más significativa. Sin embargo, los valores α de las cubiertas más representativas de todas las redes que hemos considerado resultaron cercanas a 1, por lo que es probable que la gráfica de la figura 8 sea una aproximación aproximada de la distribución real.


Figura 8. Distribución de tamaños de comunidad para el grafo de enlace correspondiente al dominio .gov de la WWW. El parámetro de resolución α = 1. La distribución es claramente sesgada, de acuerdo con hallazgos previos en grafos grandes. La cola puede ajustarse bien mediante una ley de potencia con el exponente 2.2 (1) (línea discontinua en la figura).

4. Conclusiones

En este documento, presentamos el primer método que descubre simultáneamente tanto la estructura jerárquica como la estructura de comunidad superpuesta de redes complejas. El método consiste en encontrar los máximos locales de una función de aptitud mediante búsqueda iterativa local. El procedimiento permite que cada nodo se incluya en más de un módulo, lo que lleva a una descripción natural de comunidades superpuestas. Finalmente, ajustando el parámetro de resolución α se puede sondear la red a diferentes escalas, explorando la posible jerarquía de la estructura de la comunidad. La aplicación de nuestro método a varias redes construidas y empíricas ha dado excelentes resultados.

Nos gustaría hacer hincapié en que nuestro método proporciona un marco general que produce una gran clase de algoritmos. Por ejemplo, uno podría elegir una expresión diferente para la función de aptitud, otro criterio para definir la cubierta más significativa, o un procedimiento de optimización diferente de la aptitud para un solo grupo. La configuración que hemos probado demuestra ser muy confiable, pero no podemos excluir que las diferentes opciones rindan incluso mejores resultados. De hecho, el marco es tan flexible que se puede adaptar fácilmente al problema en cuestión: si uno tiene pistas sobre la topología de las comunidades que se encuentran para un sistema específico, esta información puede usarse para diseñar una función de acondicionamiento físico particular, teniendo en cuenta las características requeridas de los módulos.

Dado que el análisis completo de la estructura de la comunidad de una red se puede llevar a cabo simultáneamente en muchas computadoras, el límite de tamaño superior de los grafos tratables puede aumentar considerablemente. Nuestro método brinda la oportunidad de estudiar sistemáticamente la distribución de tamaños de comunidades de redes grandes hasta millones de nodos, un aspecto crucial de la organización interna de un grafo, que los estudiosos recién han empezado a examinar. Un subproducto interesante de nuestra técnica es la posibilidad de cuantificar la participación de nodos superpuestos en sus comunidades por los valores de su aptitud (nodo) con respecto a cada grupo al que pertenecen.

Finalmente, nos gustaría mencionar que el método puede extenderse naturalmente a redes ponderadas, es decir, redes donde los enlaces tienen un peso. No es necesario utilizar ningún tipo de umbralización [46], ya que la generalización de la fórmula de aptitud es sencilla: en la ecuación (1), tenemos que reemplazar el grado k con la fuerza correspondiente s (expresando la suma sobre los enlaces ' pesos). Las aplicaciones a las redes dirigidas también se pueden diseñar fácilmente con opciones adecuadas de la función de aptitud. Nuestra propia función (1) podría extenderse al caso dirigido, ya que considera el grado de los nodos de un subgrafo: es plausible suponer que el grado total de los nodos del subgrafo debido a enlaces internos al subgrafo excede el grado total de grado entrante producido por enlaces provenientes de nodos externos, si el subgrafo es una comunidad.

viernes, 22 de septiembre de 2017

Percolación y crecimiento explosivo detrás de la viralidad

Las nuevas leyes de las redes explosivas


Los investigadores están descubriendo las leyes ocultas que revelan cómo crece Internet, cómo se propagan los virus y cómo estallan las burbujas financieras.

Jennifer Ouellette | Quanta Magazine


Las redes crecen a medida que los nodos individuales se conectan entre sí. Al modificar las reglas que rigen cuando los nodos se conectan, los investigadores pueden configurar las propiedades de la red.
Paolo Čerić / PATAKK


La semana pasada, United Airlines mantuvo en tierra cerca de 5.000 vuelos cuando su sistema informático se cayó. El culpable: un enrutador de red defectuoso. Más tarde, la misma mañana, otro fallo de la computadora interrumpió la negociación en la Bolsa de Nueva York durante más de tres horas.

Algunos vieron la mano siniestra de un hacker en estas interrupciones, pero son mucho más probables ser una coincidencia, una característica intrínseca del sistema algo que un insecto. Las redes bajan todo el tiempo, consecuencia de niveles de interconexión sin precedentes. Las interrupciones pueden ocurrir incluso en las redes más robustas, ya sean redes eléctricas, mercados financieros globales o su red social favorita. Como señaló el ex reportero del Atlantic, Alexis Madrigal, cuando un error informático cerró la bolsa de valores Nasdaq en 2013, "Cuando las cosas funcionan de nuevas maneras, se rompen de nuevas maneras".

Una nueva comprensión de estos sistemas - la forma en que crecen, y cómo se rompen - ha surgido de la física del café.

Los investigadores suelen pensar en la conectividad de red como sucediendo de una manera lenta y continua, similar a la forma en que el agua se mueve a través de granos de café recién molido, saturando lentamente todos los gránulos para convertirse en café en el contenedor de abajo. Sin embargo, en los últimos años, los investigadores han descubierto que en casos especiales, la conectividad podría surgir con una explosión, no un gemido, a través de un fenómeno que han denominado "percolación explosiva".







Clusters cultivados por percolación explosiva

Esta nueva comprensión de cómo surge la über-conectividad, que fue descrita a principios de este mes en la revista Nature Physics, es el primer paso hacia la identificación de señales de advertencia que pueden ocurrir cuando tales sistemas fallan -por ejemplo, cuando las redes eléctricas comienzan a fallar o cuando una enfermedad infecciosa comienza a convertirse en una pandemia mundial. La percolación explosiva puede ayudar a crear estrategias eficaces de intervención para controlar ese comportamiento y, quizás, evitar consecuencias catastróficas.

Un giro explosivo

Los modelos matemáticos tradicionales de percolación, que datan de la década de 1940, ven el proceso como una transición suave y continua. "Pensamos en la percolación como el agua que fluye por el suelo", dijo Robert Ziff, físico de la Universidad de Michigan, que ha estado estudiando transiciones de fase durante los últimos 30 años. "Es una formación de conectividad de largo alcance en el sistema".

La formación de conectividad puede entenderse como una transición de fase, el proceso por el cual el agua se congela en hielo o se separa en vapor.

Las transiciones de fase son omnipresentes por naturaleza, y también proporcionan un modelo práctico de cómo los nodos individuales en una red aleatoria se unen gradualmente, uno por uno, a través de conexiones de corto alcance a lo largo del tiempo. Cuando el número de conexiones alcanza un umbral crítico, un cambio de fase hace que el mayor clúster de nodos crezca rápidamente y resultados de über-conectividad. (Visto de esta manera, el proceso de percolación que da lugar a su taza de mañana de Joe es un ejemplo de una transición de fase.La agua caliente pasa a través de frijoles tostados y cambia a un nuevo estado - café.)

Raissa D'Souza, física de la Universidad de California, Davis, 
está explorando cómo las intervenciones a pequeña escala
pueden alterar una red grande y compleja

.

La percolación explosiva funciona un poco diferente. La noción surgió durante un taller en 2000 en el Instituto Fields para la Investigación en Ciencias Matemáticas en Toronto. Dimitris Achlioptas, científico de computación de la Universidad de California en Santa Cruz, propuso un posible medio para retrasar la transición de fase a una red densamente conectada, fusionando la noción tradicional de percolación con una estrategia de optimización conocida como el poder de dos opciones. En lugar de dejar que dos nodos aleatorios se conecten (o no), considere dos pares de nodos aleatorios y decida qué par prefiere conectar. Su elección se basa en criterios predeterminados; por ejemplo, puede seleccionar el par que tenga menos conexiones preexistentes con otros nodos.

Debido a que un sistema aleatorio normalmente favorecería a los nodos con las conexiones más preexistentes, esta elección forzada introduce un sesgo en la red, una intervención que altera su comportamiento típico. En 2009, Achlioptas, Raissa D'Souza, físico de la Universidad de California, Davis, y Joel Spencer, matemático del Instituto Courant de Ciencias Matemáticas de la Universidad de Nueva York, encontraron que modificar el modelo de percolación tradicional de esta manera cambia dramáticamente la naturaleza de la transición de fase resultante. En lugar de surgir de una marcha lenta y continua hacia una conectividad cada vez mayor, las conexiones emergen globalmente de una vez por todas en todo el sistema en una especie de explosión, de ahí el apodo de "percolación explosiva".

El concepto ha explotado por derecho propio, generando innumerables documentos en los últimos seis años. Muchos de los trabajos discuten si este nuevo modelo constituye una transición de fase verdaderamente discontinua. De hecho, en 2011 los investigadores mostraron que para el modelo particular analizado en el estudio original de 2009, las transiciones explosivas sólo ocurren si la red es finita. Mientras que las redes como Internet tienen como máximo alrededor de mil millones de nodos, las transiciones de fase se asocian más comúnmente con los materiales, que son redes intrincadas de tantas moléculas (aproximadamente 1023 o más) que los sistemas son efectivamente infinitos. Una vez extendidas a un sistema verdaderamente infinito, las percolaciones explosivas parecen perder parte de su boom.

Sin embargo, D'Souza y sus cohortes tampoco han estado ociosos. Han descubierto muchos otros modelos de percolación que producen transiciones realmente abruptas. Estos nuevos modelos comparten una característica clave, según D'Souza. En la percolación tradicional, los nodos y pares de nodos se eligen al azar para formar conexiones, pero la probabilidad de que dos grupos se fusionen es proporcional a su tamaño. Una vez que un gran grupo se ha formado, domina el sistema, absorbiendo cualquier racimo más pequeño que podría fusionarse y crecer.

Sin embargo, en los modelos explosivos, la red crece, pero el crecimiento del gran grupo se suprime. Esto permite que muchos clústeres grandes pero desconectados crezcan, hasta que el sistema alcance el umbral crítico en el que agregar sólo uno o dos enlaces adicionales desencadena un cambio instantáneo a la über-conectividad. Todos los grandes clusters se combinan a la vez en una sola fusión violenta.

Un nuevo paradigma para el control

D'Souza quiere aprender a controlar mejor las redes complejas. La conectividad es una espada de doble filo, según ella. "Para sistemas operativos normales (como Internet, las redes aéreas o la bolsa de valores), queremos que estén fuertemente conectados", dijo. "Pero cuando pensamos en la propagación de epidemias, queremos reducir el alcance de la conectividad". Incluso cuando la conectividad es deseable, a veces puede ser contraproducente, causando un colapso potencialmente catastrófico del sistema. "Nos gustaría ser capaces de intervenir en el sistema fácilmente para mejorar o retrasar su conectividad", dependiendo de la situación, dijo.

La percolación explosiva es un primer paso en el pensamiento sobre el control, según D'Souza, ya que proporciona un medio de manipular el inicio de la conectividad de largo alcance a través de interacciones a pequeña escala. Una serie de intervenciones a pequeña escala puede tener consecuencias dramáticas - para bien o para mal.

Los profesionales de las relaciones públicas a menudo se preguntan cómo el trabajo de D'Souza podría ayudar a sus productos ir viral. Ella responde típicamente señalando que sus modelos suprimen realmente comportamiento viral, por lo menos en el corto plazo. "¿Quieres ganar todas las ganancias tan rápido como puedas, o quieres suprimir el crecimiento, así que cuando sucede, más gente aprende de inmediato?", Dijo. Lo mismo ocurre con las campañas políticas, según Ziff. Siguiendo este modelo, pasarán gran parte de su tiempo a principios de la campaña en los esfuerzos locales de base, creando grupos localizados de conexiones y suprimiendo la aparición de conexiones de largo alcance hasta que la campaña esté lista para ir nacional con un gran chapoteo mediático.

En otros sistemas, como los mercados financieros o las redes de energía eléctrica, cuando ocurre un colapso, es probable que sea catastrófico, y este enfoque de mosaico podría ser utilizado para invertir el proceso, rompiendo el sistema conectado en una colección de agrupamientos disjuntos, o "islas", para evitar catastróficas fallas en cascada. Idealmente, uno esperaría encontrar un "punto dulce" para el nivel óptimo de intervención.


En las redes eléctricas, las empresas de servicios públicos pierden dinero cada vez que una línea baja, por lo que idealmente uno debe tratar de evitar cualquier tiempo de inactividad. Sin embargo, actuar para evitar cualquier interrupción en absoluto puede conducir inadvertidamente a interrupciones muy grandes que son mucho más costosas. Por lo tanto, el fomento de pequeños "fallos" en cascada puede disipar los desequilibrios energéticos que de otro modo habrían causado fracasos masivos más adelante, una estrategia potencialmente inteligente a pesar de que come en los márgenes de beneficio. "Si suelen desencadenar pequeñas cascadas, nunca se obtienen eventos realmente masivos, pero sacrifican todo ese beneficio a corto plazo", explicó D'Souza. "Si se evitan las cascadas a toda costa, se puede obtener una gran ganancia, pero eventualmente se producirá una cascada, y será tan masiva que [podría] borrar todo su beneficio".

El siguiente paso es identificar los signos que pueden indicar cuando un sistema está a punto de ser crítico. Los investigadores entienden las transiciones de fase como las que suceden cuando el agua se convierte en hielo y pueden identificar señales de un cambio inminente. Lo mismo no puede decirse de la percolación explosiva. "Una vez que tengamos una mejor comprensión, podremos ver cómo nuestras intervenciones de control están impactando el sistema", dijo D'Souza. "Vamos a tener estos datos que podemos analizar en tiempo real para ver si estamos viendo la firma de las señales de alerta temprana de muchas clases diferentes de transiciones".

Las transiciones de fase han fascinado físicos y matemáticos por décadas, así que ¿por qué se ha encontrado este comportamiento explosivo sólo ahora? D'Souza piensa que es porque el descubrimiento requirió la fusión de ideas de varios campos, sobre todo la idea de Achlioptas de mezclar algoritmos y física estadística, creando así un emocionante nuevo fenómeno de modelado. "Realmente es un nuevo paradigma de percolación", dijo Ziff.