domingo, 20 de enero de 2019

Las epidemias de ideas se inician desde centros prestigiosos

En ciencia, algunas ideas son más contagiosas que otras


Un modelo de enfermedad infecciosa muestra que las ideas de instituciones prestigiosas tienen más probabilidades de propagarse más lejos


Por Viviane Callier |  Scientific American






Al igual que las enfermedades infecciosas, las ideas en el mundo académico son contagiosas. Pero por qué algunas viajan a lo largo y ancho, mientras que otras igualmente buenas permanecen en relativa oscuridad, ha sido un misterio. Ahora, un equipo de científicos informáticos ha utilizado un modelo epidemiológico para simular cómo las ideas pasan de una institución académica a otra. El modelo mostró que las ideas que se originaron en instituciones prestigiosas causaron "epidemias" más grandes que ideas igualmente buenas de lugares menos prominentes, explica Allison Morgan, un científico informático de la Universidad de Colorado Boulder y autor principal del nuevo estudio.

“Esto implica que donde nace una idea, se determina cuán lejos se propaga, manteniendo constante la calidad de la idea”, dice el autor principal Aaron Clauset, también en Boulder.

Esto no solo es injusto: "revela una gran debilidad en la forma en que hacemos ciencia", dice Simon DeDeo, profesor de ciencias sociales y de la decisión en la Universidad Carnegie Mellon, que no participó en el estudio. Hay muchas personas altamente capacitadas con buenas ideas que no terminan en instituciones de primer nivel. "Están produciendo buenas ideas y sabemos que esas ideas se están perdiendo", dice DeDeo. "Nuestra ciencia, nuestra beca, no es tan buena debido a esto".
Anuncio

Los investigadores de Colorado analizaron un conjunto de datos existentes de contrataciones de profesores de informática en América del Norte, así como una base de datos de publicaciones de estas contrataciones. Primero observaron cómo cinco grandes ideas en informática se extendieron a nuevas instituciones. Descubrieron que la contratación de un nuevo miembro de la facultad representaba este movimiento un poco más de un tercio del tiempo, y en el 81 por ciento de esos casos, las transmisiones se realizaban desde universidades de mayor o menor prestigio. Luego, el equipo simuló la difusión de ideas utilizando un modelo de enfermedad infecciosa y descubrió que el tamaño de una idea "epidémica" (medido por el número de instituciones que publicaron estudios sobre una idea después de que se originó) dependía del prestigio de la institución de origen. . Los hallazgos fueron publicados en línea en octubre pasado en EPJ Data Science.

El modelo de los investigadores sugiere que "puede haber una serie de ideas bastante buenas que se originan en el medio del paquete, en términos de universidades", dice Clauset. DeDeo está de acuerdo. Hay mucho trabajo bueno que sale de lugares menos famosos, dice: "Puedes aprender mucho de ellos y puedes aprender cosas que otras personas no saben porque ni siquiera prestan atención".

domingo, 13 de enero de 2019

ARS 101: Amistad, redes y distribución de frecuencia de grados

Cómo la matemática de las redes puede ayudarte a hacer amigos

Estudiar la estructura de las amistades existentes en su comunidad puede ayudarlo a forjar las mejores conexiones al formar un nuevo círculo de amigos.


8



Patrick Honner | Quanta Magazine



Cuando comienzas en una nueva escuela o trabajo, o te mudas a una nueva ciudad, ¿cómo haces para hacer nuevos amigos? Podrías adoptar un enfoque activo, forjando conexiones estratégicas con los niños populares y los que hacen movimientos. O podría dejar las cosas al azar, confiando en agrupaciones y asociaciones aleatorias. Sea cual sea su enfoque, comprender la estructura de las amistades existentes en su nueva comunidad puede ayudarlo a hacer las mejores conexiones, que en última instancia definirán su círculo de amigos.

Imagínese mudarse a una ciudad nueva y extraña, Regulartown, que tiene una regla extraña: todos pueden tener a lo sumo cuatro amigos, y todos quieren maximizar sus amistades. ¿Cómo será la estructura de las amistades en Regulartown? Para explorar esta pregunta, usaremos un objeto matemático llamado red.

En pocas palabras, una red es un conjunto de objetos, llamados "nodos", y las conexiones entre ellos. Las redes son matemáticamente versátiles: pueden representar computadoras y los cables que las conectan, los autores y sus colaboraciones, o los estados de un cubo de Rubik y los movimientos que los transforman, esencialmente cualquier conjunto de conexiones, reales o abstractas. Para estudiar amistades en Regulartown, crearemos una red donde los nodos son personas y las conexiones son las amistades entre ellos.

Una forma útil de representar redes es imaginar los nodos como puntos y las conexiones como segmentos de línea, lo que también llamaremos enlaces. Este diagrama de red nos puede dar una idea de su estructura. Entonces, ¿cómo será la red de amistades en Regulartown? En algún momento puede parecer algo como esto:




Cada persona intentará encontrar a sus cuatro amigos y, a medida que nuevas personas se muden a la ciudad, buscarán a alguien con menos de cuatro amigos para conectarse. De esta manera, la red seguirá creciendo con el tiempo, expandiéndose continuamente en los enlaces a medida que se agregan nuevos nodos. (También es posible que se formen camarillas independientes, pero ignoraremos esa posibilidad en nuestro ejemplo).

Los diagramas de redes pueden iluminarse cuando indican una estructura clara. Pero cuando las redes se vuelven grandes o no exhiben el tipo de estructura regular de un Regulartown, los diagramas pueden ser menos útiles. Ayuda a desarrollar diferentes formas de analizar la estructura de una red. Una forma es pensar en la distribución del grado de la red.

En una red, el número de conexiones que tiene un nodo se conoce como el "grado" de ese nodo. Un nodo con un alto grado está conectado a muchos otros nodos; un nodo con un grado bajo está conectado a algunos otros nodos.



El grado de un nodo es una medida importante en una red, pero es local: solo describe la estructura de una red en un solo nodo. Pero al pensar en los grados de todos los nodos a la vez, podemos crear una herramienta útil para comprender la estructura global de una red.

En nuestra red de amistad, el grado de cada nodo es el número de amigos que tiene cada persona. En Regulartown, la mayoría de las personas tendrá cuatro amigos, por lo que la mayoría de los nodos tendrán el grado 4. Los residentes no tendrán más de cuatro amigos, pero algunos tendrán menos, por lo que habrá nodos con los grados 3, 2 o 1. Podemos resumir la distribución de grados como este:



Este histograma transmite información importante sobre la estructura de nuestra red. En este simple ejemplo, puede que no nos diga tanto como nuestro diagrama de red, pero veremos cómo las distribuciones de grado pueden ser herramientas poderosas para comprender diferentes tipos de redes.

Vayamos a una nueva ciudad. En Randomville, las amistades suceden al azar. Dado que la aleatoriedad puede ser un asunto complicado, seamos claros sobre lo que queremos decir: imaginaremos a cada persona de la ciudad como un nodo en una red, lo que hace que cada posible ventaja sea una posible amistad. Para generar una amistad aleatoria, elegiremos uno de esos posibles enlaces al azar y lo dibujaremos, estableciendo una conexión entre esos dos nodos y, por lo tanto, una amistad entre esas dos personas.

¿Cómo sería la red de Randomville? Suponiendo que comencemos con un grupo de nodos y agregamos al azar un grupo de enlaces, la imagen puede verse así:


Puede ser difícil ver la estructura en este diagrama. Pero el grado de distribución de esta red es esclarecedor. Si bien no es fácil calcular directamente, podemos razonar a través de algunas propiedades importantes usando un ejemplo simple.

Imagina que eres una de las 10 personas en Randomville. ¿Cuántas amistades posibles hay? Cada una de las 10 personas podría estar conectada a las otras nueve, por lo que parece que potencialmente podría dibujar 10 × 9 = 90 enlaces. Pero esto en realidad cuenta cada amistad posible dos veces: una para cada amigo. Entonces, el número total de amistades posibles es realmente 90 dividido por 2, o 45.

Ahora digamos que elegimos al azar una amistad, es decir, seleccionamos al azar uno de los 45 enlaces posibles en nuestra red. ¿Cuál es la probabilidad de que se conecte con usted? Bueno, hay nueve enlaces posibles que se extienden desde usted a cada uno de los otros nueve nodos. Dado que nueve de los 45 enlaces se conectan con usted, la probabilidad de que un enlace seleccionado al azar se conecte con usted es de 94515, o 20 por ciento.

Pero este mismo argumento se aplica a todos en Randomville, por lo que cada nodo tiene un 20% de probabilidad de estar conectado al enlace seleccionado al azar. Ahora, a medida que se agregan los enlaces (y los nodos), estas probabilidades cambiarán ligeramente, pero a la larga seguirán siendo aproximadamente las mismas. Esto significa que las amistades se distribuirán de manera bastante uniforme alrededor de Randomville. Habrá algunas variaciones leves aquí y allá, pero tener pocos amigos o muchos amigos será poco probable. En Randomville, es probable que casi todos terminen con algo parecido a un número promedio de amigos.

 Estas características familiares están incorporadas en la distribución de grado "binomial" de una red aleatoria típica.

 

Al observar solo la distribución en grados de esta red, podemos inferir un tipo particular de uniformidad: cuando se trata de conectividad, la mayoría de los nodos son promedio y muy pocos son extremos. Esta es una información útil cuando se trata de entender la estructura de la red. (A medida que se agregan nodos, digamos, cuando nuevas personas vienen a la ciudad, la distribución cambiará ligeramente, pero las características generales persistirán).

Ahora, ninguno de estos dos ejemplos, la regla de la mayoría de los cuatro amigos de Regulartown o las amistades seleccionadas al azar de Randomville, son modelos realistas de amistad. Las personas pueden tener más de cuatro amigos, y tener muchos amigos no es tan inusual como sugiere la distribución binomial. Entonces, ¿qué es un modelo de amistad más realista?

A medida que establezca conexiones con amigos y amigos de amigos, la estructura de sus amistades probablemente compartirá características comunes a otras redes del mundo real como redes de alimentos, interacciones de proteínas e Internet. Estas características caracterizan las llamadas redes "sin escala", un modelo de conectividad que ha llegado a dominar la ciencia de redes en los últimos 20 años. Investigadores de matemáticas, física, economía, biología y ciencias sociales han visto los signos reveladores de redes sin escala en sus campos dispares.



Una compleja red sin escala que representa los metadatos de una red social.
Martin Grandjean

La estructura de las redes sin escala depende del principio simple de "conexión preferencial". La conexión preferencial es una regla de crecimiento de la red rica en riqueza: un nodo con muchas conexiones existentes es más probable que obtenga nuevas conexiones que un nodo con pocas conexiones Conexiones existentes. Las nuevas conexiones muestran una preferencia por los nodos de alto grado.

¿Tiene sentido esto en el contexto de la formación de la amistad? En general, parece razonable argumentar que una persona con muchos amigos tendrá más probabilidades de hacer nuevos amigos. Como ya están conectados a más personas, es más probable que conozcan a nuevas personas a través de esas conexiones existentes. Tener más amigos crea más oportunidades para hacer nuevos amigos. Y el hecho de que ya tengan muchos amigos sugiere que pueden tener algún tipo de capacidad o afinidad para hacer amigos. Esto probablemente atraerá a otros, al igual que los sitios web populares dibujan enlaces de otros sitios y blogs, y las ciudades establecidas invitan a nuevas líneas de ferrocarril y rutas aéreas.

Si bien hay múltiples factores que intervienen en el desarrollo de redes sin escala, muchos consideran que el vínculo preferencial es el más fundamental. Y tiene una consecuencia fascinante en la distribución de un grado de red.



El apego preferencial predice una distribución de grados "de cola gruesa". La mayoría de los nodos en la red serán de grado bajo, pero habrá nodos de grado cada vez más alto. Esto contrasta con las redes de amistad de Regulartown y Randomville, que tenían pocos o ningún nodo de alto grado.

Estos nodos de alto grado, que actúan como centros, son una característica crítica de las redes sin escala. Son las mariposas sociales de las redes de amistad, los bancos en el centro de las economías, los enrutadores centralizados que recorren las líneas regionales de Internet, los Kevin Bacons del mundo en funciones. Los hubs pueden aportar una sensación de pequeño mundo a una red enorme; por ejemplo, dos usuarios seleccionados al azar de los dos mil millones de personas en Facebook son, en promedio, menos de cuatro amigos. Y la cantidad y diversidad de hubs también proporciona a las redes sin escalas resistencia frente a ciertos tipos de fallas: por ejemplo, incluso si fallan muchas conexiones a Internet, los mensajes aún se pueden transmitir, en parte porque todavía habrá muchas formas de llegar y salir de la red. muchos centros (hubs).

Si bien parece haber acuerdo sobre la utilidad de las redes sin escala y sus características de alto nivel, esta área de estudio no está exenta de controversia. Las características matemáticas precisas de estas distribuciones de grados pueden ser difíciles de interpretar. En su libro Linked: The New Science of Networks, el pionero de la ciencia en redes y físico Albert-László Barabási argumentó que las redes que exhiben un apego preferencial tendrán distribuciones de grado que esencialmente siguen una "ley de poder". Las distribuciones de la ley de poder se ven en muchas situaciones físicas, Como las leyes de la inversa al cuadrado de la gravitación y los campos eléctricos. Pueden representarse como funciones de la forma  f(x)=axk, y sus gráficas suelen tener este aspecto:



Las distribuciones de la ley de poder tienen colas gruesas. ¿Pero qué tan gordo? Es decir, ¿cuántos concentradores de cada grado deberíamos esperar en una red de este tipo? Un estudio publicado a principios de este año analizó 1,000 redes del mundo real y concluyó que solo un tercio tenía distribuciones de grado que podrían ser descritas razonablemente por una distribución de ley de poder. Muchas de las redes tenían distribuciones de grado que podrían describirse con mayor precisión utilizando distribuciones "exponenciales" y "log-normal". Pueden tener las características de alto nivel características de las redes sin escala, pero sin la distribución de grado esperada, ¿pueden realmente considerarse sin escala? ¿Y realmente importa?

Importa si queremos conectar nuestras teorías a nuestros datos. ¿Es el apego preferencial realmente el factor principal en la formación de redes sin escala? ¿O hay otros factores que también desempeñan roles sustanciales, factores que pueden impulsar las distribuciones de grados en diferentes direcciones? Responder a estas preguntas y descubrir cuáles son las preguntas correctas que se formulan a continuación, es parte de comprender completamente la naturaleza y la estructura de las redes, cómo se desarrollan y cómo evolucionan.

Y la controversia también nos recuerda que, al igual que nuestras redes, las matemáticas en sí mismas son un conjunto de conexiones en evolución. La investigación contemporánea está desafiando las conjeturas de 20 años en el campo relativamente joven de la ciencia de redes. A medida que las nuevas ideas se unen a la red, nos conectan a las matemáticas del pasado y del futuro. Entonces, cuando se trata de matemáticas, al igual que en las amistades, harás bien en encontrar los centros y maximizar tu título.

Ejercicios
  1. ¿Cómo sería una red de amistad si cada persona tuviera exactamente dos amigos?
  2. En Regulartown cada persona puede tener hasta cuatro amigos. Es posible que se formen camarillas en Regulartown, pequeños grupos en los que cada persona tiene exactamente cuatro amigos. ¿Cuántas personas podrían estar en tal pandilla? (Sugerencia: la respuesta está relacionada con un sólido platónico).
  3. Nuestras redes de amistad confían en que la amistad sea una relación simétrica, es decir, si A es amigo de B, entonces B es amigo de A. ¿Cómo podríamos ajustar nuestro modelo de red para adaptarse a una noción no simétrica de amistad, donde A podría ser amigo de B pero B no ser amigos con A?
  4. En Friendville, todos son amigos de todos los demás. Si hay n personas en Friendville, ¿cuántas amistades hay?





jueves, 10 de enero de 2019

Introducción al análisis de redes organizacionales (ONA)


Análisis de redes organizacionales.

Obtenga una visión, conduzca con inteligencia


Visualizar y analizar las relaciones formales e informales en su organización puede ayudarlo a diseñar una estrategia comercial que maximice el intercambio orgánico de información, lo que ayudará a que su empresa sea más sostenible y eficaz.


Delloite


Ver más allá del organigrama


En cada organización, las personas construyen equipos informales de asistencia. Confían en esa persona que siempre sabe "cómo hacemos las cosas aquí". Encuentran a alguien en finanzas que puede responder a cualquier pregunta sobre el presupuesto. Estas conexiones espontáneas y de importancia crítica son el alma de las organizaciones de todo el mundo.

El Análisis de redes organizacionales (ONA) es una forma estructurada de visualizar cómo las comunicaciones, la información y las decisiones fluyen a través de una organización. Las redes organizativas consisten en nodos y vínculos, la base para comprender cómo fluye la información en su organización, puede fluir y debería fluir.

Análisis de red organizacional (ONA) explicado


Cada organización tiene personas (nodos) que sirven como conductos críticos para el intercambio de ideas e información (Figura 1). Una conexión entrega valor cuando se intercambia información necesaria.
  • Nodo central: estas son las personas que parecen conocer a todos. Los nodos centrales comparten mucha información e influyen en los grupos rápidamente. Los nodos centrales pueden estar en cualquier lugar en la jerarquía de una organización, a menudo son muy apreciados y están muy comprometidos con las noticias y desarrollos de la compañía.
  • Agente de conocimiento: estas personas crean puentes entre grupos. Sin intermediarios de conocimiento, la información y el intercambio de ideas se detienen.
  • Periférico: Los periféricos de alto potencial, que son fácilmente pasados ​​por alto y desconectados del resto de la empresa, pueden ser un riesgo para las organizaciones. Los excepcionales programadores de Java que no enseñan a los demás las mejores prácticas no solo estancan el desarrollo del producto, sino que también se convencen fácilmente de llevar sus talentos a otra parte.
  • Lazos: Los lazos son las relaciones formales e informales entre nodos. El establecimiento de vínculos relacionales óptimos entre los nodos centrales y los agentes de conocimiento ayuda a garantizar que la información útil se mueva fácilmente entre los grupos y dentro de ellos.

Estos nodos y lazos son los elementos centrales de ONA. La visualización de las relaciones entre nodos y vínculos hace que sea mucho más fácil identificar las conexiones críticas y las posibles barreras al flujo de información y la colaboración. ONA revela dónde los nodos centrales podrían tener el mayor impacto, por ejemplo, en grupos que "no hablan mucho", o donde debería crear conexiones más sólidas para agilizar el intercambio de información y eliminar la redundancia.

Figura 1: actores de muestra



Al identificar y administrar los nodos centrales de manera adecuada, el cambio se puede adoptar de manera más rápida y generalizada, lo que ayuda a limitar las interrupciones costosas mientras la organización está alineada con la estrategia empresarial.


Desbloquea el poder de las redes.


Aumentar la efectividad operacional.

Los organigramas formales a menudo se parecen poco a la red de personas que realmente ejecutan el trabajo. ONA puede ofrecer información valiosa durante el diseño organizativo, facilitando el establecimiento de estructuras futuras que posicionen a los empleados donde puedan brindar el mayor impacto.

Transformar las organizaciones de una manera más inteligente.

Muy a menudo, los líderes identificados en un organigrama no son los verdaderos centros del flujo de información o son percibidos como personas a las que "acudir". Es fácil confiar en la palabra de boca y en las heurísticas de gestión para identificar a las personas para que actúen como agentes de cambio durante la implementación y transformación de una nueva organización. Pero con más frecuencia que no, las personas identificadas a través de estos enfoques no son los líderes "reales". ONA aumenta las posibilidades de que los líderes naturales de su organización estén a bordo y la transformación logre los objetivos previstos.

Usa el talento eficientemente

El trabajo real del día a día no puede ser representado completamente por un título de trabajo o capturado en un chat de organización. ONA puede revelar qué posiciones y unidades están interactuando para realizar el trabajo.
  • Claridad funcional: ¿Están todos los recursos de infraestructura de TI alineados con su grupo de TI compartido? ¿Son los empleados de finanzas los únicos que ejecutan actividades de cierre de libros al final del año? La realización de una ONA puede exponer el verdadero costo de los recursos de las actividades, así como el trabajo real realizado bajo cada título de trabajo. ONA proporciona una perspectiva nueva e informada para definir el estado futuro de las funciones y actividades, desde el nivel de departamento hasta el contribuyente individual.
  • Definición de roles: ONA muestra dónde comienza, se detiene y se detiene el trabajo. Esto puede proporcionar información valiosa sobre el estado actual y futuro de la toma de decisiones y el gobierno de su organización, y hace que sea más fácil ver cómo integrar a las personas adecuadas en el flujo. Por ejemplo, durante la actividad de fusiones y adquisiciones, los títulos de trabajo inexactos o definidos de manera diferente pueden hacer que los roles parezcan diferentes cuando en realidad son los mismos. A través de ONA, las organizaciones pueden ayudar a identificar la redundancia de roles dentro de una red, potencialmente liberando talento para completar más actividades de valor agregado.

Usar ONA para informar los esfuerzos de diseño de la organización puede ayudar a:

  • Aumente la efectividad operativa al construir una organización que está estructurada para aumentar la colaboración y el intercambio de información entre las personas adecuadas.
  • Transforme las organizaciones de una manera más inteligente mediante la identificación de líderes formales e informales con los que se puede contar para facilitar el cambio y ayudar a acelerar la realización de los beneficios de la transformación.
  • Use el talento de manera más efectiva minimizando la confusión de roles y la redundancia.

domingo, 6 de enero de 2019

Investigaciones de redes: Mensaje a los interesados

Puente hacia los lectores e investigadores del blog


Hola a los lectores del blog.

Me gustaría compartir en esta entrada del blog las áreas de investigación en redes en las cuales estoy abocado. La idea es, si a los lectores les parece, iniciar un intercambio entre todos quienes se hallen iniciando o ya estén abocados a una investigación en análisis de redes sociales o ciencia de redes para que podamos compartir experiencias.

Creo fervientemente que es una buena idea posibilitar un intercambio entre quienes les interese esta temática para, precisamente, crear enlaces y mantenerlos de manera que esta área del conocimiento se sigan nutriendo de nuestros aportes, dudas, intereses y motivaciones.

En ese sentido, también invito a quiénes estén investigando que publiquen en el blog los avances, las propuestas de investigación, las dudas respecto al qué, cómo, cuando, por qué de su investigación de modo que podamos crear una comunidad de intercambio. Creo que es un momento interesante para implementar lo que se lee en el blog, discutirlo y comenzar entre los interesados a crear redes de investigación de redes, por más que suene recursivo.

Primero una breve historia personal. Básicamente, todas mis tesis han sido sobre redes. Mi primera tesis de master en administración fue sobre un trabajo de campo que lamentablemente no se pudo realizar por falta de financiamiento pero que derivó en un survey de literatura que se publicó en 2006 en la tan amada revista Redes. El tema de investigación era el uso de capital humano y capital social en la efectividad de la profesión de abogado. En paralelo perseguía mi tesis doctoral en economía, la cual se abocó a la implementación de teoría de juegos a la formación de redes, desde un punto de vista muy teórico (ergo, ecuaciones y deducciones sobre teoría de grafos y equilibrios de Nash... algo muy poco atrayente para el público aunque sumamente interesante). Finalmente, implementé estos modelos teóricos en una tesis de master en computación científica unos cinco años más tarde utilizando un algoritmo evolutivo para que "jugara" con los equilibrios teóricos deducidos en mi tesis doctoral.

Redes de páginas de Facebook de discos de Bahía Blanca, 2015

Para todo estos trabajos no utilicé mucho el análisis de redes sociales (ARS) tradicional en sí mismo. El material de la tesis doctoral y de la tesis de master en computación no era uno que atrayera a estudiantes de posgrado por su complejidad y dificultad así que empecé a armar un curso de posgrado en ARS en el departamento de Economía de la Universidad Nacional del Sur. Es un curso tradicional inspirado en su composición de temas en un curso que dictaba el gran Jose Luis Molina en la Autónoma de Barcelona, junto con material de otro curso de redes en economía de Mark Mobius de Harvard y el también genial curso que dictó Lada Adamic en Coursera, con una introducción magnífica que propone el libro de los franceses Degenne y Forsé. Ese fue siempre el marco del curso que dicté en la UNS el cual espero ponerlo online durante 2019.

Los trabajos de investigación míos en redes actualmente son todos aplicados con datos de Argentina. Debo retomar en algún momento los modelos teóricos pero será al final de este año.
  • Actualmente nos hallamos abocados con la doctora Laura del Valle (UNS) a la investigación de las redes sociales de las familias capitulares del Cabildo de Buenos Aires durante el período del Virreinato del Río de la Plata (1776-1810). Las familias capitulares comprenden los grupos familiares (con actores consanguíneos y rituales) de miembros integrantes del Cabildo (de allí el adjetivo capitular). Actualmente contamos con 3 publicaciones indexadas de nuestras investigaciones y hemos ampliado la base de datos de 550 miembros a 1990 miembros por lo que esperamos en 2019 ampliar los resultados obtenidos hasta ahora. Investigamos que rol ha desempeñado la posición al red de cada individuo y de cada grupo familiar en la posibilidad de incluir un miembro dentro la composición del Cabildo, los cuales eran cargos "electivos". Encontramos que los individuos con mayor grado y menor autovector y las familias con mayor grado alcanzaron las posiciones más altas del Cabildo aunque desempeñando menos períodos en el cargo. Ello se enmarca en una institución que valoraba mucho el status social de sus miembros (muchos enlaces) y donde la experiencia en el trabajo era menos meritoria (menor tiempo en el cargo). Nuestro sendero de investigación comprende este año:
    • Evaluar el rol de las mujeres de la red en términos de determinar la posibilidad de elección de un miembro en el concejo
    • Evaluar el rol de la posición en la red en la posibilidad de aprobar o no ciertas regulaciones específicas sujetas a votación del Cabildo.
    • Corroborar si el uso de centralidades combinadas ayuda a detectar actores más influyentes en diversos políticos específicos del Cabildo.


  •  La segunda vía de investigación comprende el análisis de una gran base de datos de páginas de Facebook capturadas a lo largo de todo un año en la ciudad de Bahía Blanca. La misma comprende 325 páginas-redes, con más de 90 mil nodos y 4 millones de enlaces. Este trabajo lo estamos iniciando con Emiliano Gutiérrez como parte de su tesis doctoral. Esperamos obtener métricas estructurales, métricas individuales y la detección de actores principales, en primer lugar.  Una vez avanzado en este paso, esperamos realizar un análisis de sentimiento y lingüistico según género y sector económico e institucional de la página. Una tercera vía es una vez pasadas las fases anteriores, comprende detectar específicamente por geografía urbana los actores y sectores más vulnerables socioeconómicamente de la red y enfocarnos en un análisis diferencial de esta categoría de actores respecto al resto (¿de qué hablan? ¿cómo se expresan? ¿qué buscan en la red?, entre otras)
  • Una tercera vía han sido redes de coautoría y temáticas. Una maneran natural ha sido para mi descargar la información del principal congreso de economía de Argentina del sitio de la Asociación Argentina de Economía Política (AAEP). Actualmente ya hay una publicación del mismo y representa una forma muy natural de crear redes a través de eventos (redes bipartitas).
  • Finalmente por ahora, tengo en agenda modelos teóricos de juegos de formación de redes y modelos macroeconómicos con redes así como el uso de redes de correlación como herramienta de trabajo para reducir la dimensionalidad de bases de datos con muchas variables. Estos trabajos están en fase de inicio de working paper. Asimismo trabajo en procesos de difusión en redes sociales en línea aplicadas al marketing (una publicación indexada).
Bien hasta aquí lo mío. Me gustaría a los que les interese compartir en qué están trabajando, qué dudas tienen, qué temas les gustaría investigar, cómo llegaron al enfoque de redes en su vida académica, que compartan el material, que compartan sus experiencias académicas y sus dudas.
  • Les propongo contactarse conmigo vía email: jlarrosa@uns.edu.ar
  • A los interesados en presentar sus proyectos de investigación puedo habilitarlos como coautores del blog para que suban y armen sus propias entradas, en colaboración conmigo sobre todo en el tema de subir los gráficos y tablas y el etiquetado de los trabajos.
  • Proponer otras formas de conectarnos y discutir tópicos de redes... La redes sociales en línea facilitan mucho estos desafíos.

Bien, por ahora un gusto contactarme directamente con ustedes y que sea para bien de todos y, sobre todo, para mejorar nuestro entendimiento de cómo las redes modelan nuestras vidas.
 

Juan MC Larrosa

viernes, 4 de enero de 2019

Facebook reduce la brecha de género y educativa

El uso de Facebook está vinculado a la igualdad de género

La actividad de las redes sociales puede reducir el desequilibrio de poder masculino-femenino.


Por Matthew Hutson | Scientific American



Además de ofrecer videos de gatos e imágenes de bebés, las redes sociales pueden proporcionar información demográfica útil. Un nuevo estudio encuentra que, en todo el mundo, el uso de Facebook por parte de las mujeres está asociado con una mayor igualdad de género.

Los investigadores analizaron los datos anónimos de 1.400 millones de usuarios en 217 países, territorios y regiones autónomas y calcularon la proporción de mujeres y hombres de 13 a 65 años que utilizaron activamente la red social. Se consideró que los lugares con un índice de uso menor entre mujeres y hombres, como Afganistán, tenían una mayor "brecha de género en Facebook" (gráfico y mapa). El equipo también recopiló datos del Foro Económico Mundial sobre la igualdad de género de los países en términos de oportunidades económicas, educación y salud. El estudio descubrió que cuanto más pequeña era la división de género en Facebook de un país en 2015, mayor era la igualdad económica de género el año siguiente. En contraste, un aumento en la igualdad de género en la economía en 2015 no se asoció con una reducción en la brecha de género en Facebook durante el 2016. Este hallazgo sugiere que una brecha de género más pequeña en Facebook es más probable que contribuya a la igualdad de género en la economía, y no como resultado de esta. . Los resultados se publicaron en julio en las Actas de la Academia Nacional de Ciencias de EE. UU.

Ridhi Kashyap, un demógrafo de la Universidad de Oxford, que no participó en el estudio, publicó un mapa separado de la brecha de género en Internet, también utilizando datos de Facebook. Encontró que las brechas de género en el uso de Facebook demostraron ser una buena medida de las brechas de género en el uso de Internet en general; los datos sobre este último a menudo no están disponibles. Kashyap dice que Internet puede proporcionar a los usuarios información valiosa sobre salud y empleo y "también puede ser una excelente manera de mejorar las habilidades". David Garcia, científico computacional de la Universidad Médica de Viena y autor principal del estudio PNAS, dice Facebook los datos podrían ayudar a los responsables de las políticas a estimar la desigualdad de género en los países pobres y podrían seguir su evolución a diario.


La brecha de género en Facebook vs. la brecha educativa

Los investigadores compararon los valores de la División de Género de Facebook (FGD) con los índices de brecha de género del Foro Económico Mundial para cada país o región y encontraron un vínculo particularmente fuerte con la desigualdad en la educación.El gráfico incluye solo países y regiones para los cuales hay datos disponibles para ambas medidas.




Crédito: Amanda Montañez; Fuentes: "Análisis de la desigualdad de género a través de los datos publicitarios de gran escala de Facebook", por David Garcia et al., En Actas de la Academia Nacional de Ciencias de EE. UU., Vol. 115, No. 27; 3 de julio de 2018 (datos de brecha de género en Facebook); The Global Gender Gap Report 2016. World Economic Forum, 2016 (datos de brecha de género en educación)

miércoles, 2 de enero de 2019

Los efectos positivos y negativos de la presión de grupo

La razón extraordinaria por que las personas excepcionales evitan a los amigos mediocres (recompensan a tu cerebro)

Tu multitud literalmente te hace ver el mundo de manera diferente.


Por Mithu Storoni, autor de 'Stress-Proof'
@StoroniMithu
INC 




CREDITO: Getty Images

Les dicen a los empresarios que son solitarios, y que los visionarios lo hacen solos. Para tener éxito, has escuchado que debes dejar a los detractores y rodearte de otros que piensan como tú. ¿Hay realmente alguna verdad a esto? ¿Cuál es la ciencia detrás de por qué la multitud correcta puede impulsarnos hacia adelante, mientras que la multitud equivocada nos frena?

Una línea recta puede encogerse o crecer.

Cuando Solomon Asch, un psicólogo de Swarthmore College en la década de 1950, le pidió a un grupo de voluntarios que estimaran la longitud de una línea negra vertical en una tarjeta blanca llana, hizo una observación intrigante. Encontró que la estimación de cada persona variaba dependiendo de lo que todos los demás pensaban. Una persona rodeada de personas que sobreestimaron su longitud también la sobreestimó. Lo mismo era cierto para la subestimación. La gente literalmente veía la línea de manera diferente dependiendo de quién estaba a su alrededor.

¿Cómo puede una línea negra verse diferente dependiendo de las opiniones de otros? Asch estaba simplemente confirmando lo que Gustave Le Bon había escrito hace más de medio siglo, en su tratado seminal The Crowd: A Study of the Popular Mind, un estudio que se dice fue leído por Lenin, Mussolini y Hitler. Le Bon escribió que en una multitud "los sentimientos e ideas de todas las personas toman una misma dirección y su personalidad consciente desaparece".

¿Qué está pasando en tu cerebro?

Cuando tienes una opinión, una idea o un deseo que coincide con los de las personas que te rodean, el camino de la recompensa de tu cerebro se hace cosquillas y te sientes bien.

Si, por otro lado, su opinión, idea o deseo es diferente de los de las personas que lo rodean, una parte de su cerebro que se dispara cuando siente dolor (la ínsula anterior) se activa. Cuando esto sucede, haces una de dos cosas:
  1. Opción A: pretendes estar de acuerdo con los demás, pero continúas guardando tus propios pensamientos en secreto.
  2. Opción B: tu cerebro cambia activamente tu forma de pensar y moldea tus pensamientos más íntimos para alinearlos con los de tu público.

Un artículo reciente sugiere que puede estar usando la opción B más a menudo de lo que cree.

Una red dentro de su cerebro (que involucra la corteza frontal medial y la ínsula anterior) controla los "errores" en la forma en que se conforma con las personas que lo rodean. Se vuelve activo tan pronto como usted y su grupo no están de acuerdo en algo y anuncian los esfuerzos de su cerebro para tratar de reducir esta brecha de desacuerdo.

Un estudio ha demostrado cómo esta red se activa antes de que las personas cambien sus creencias más íntimas para que coincidan con las creencias que aparentemente sostienen.

Lo que esto significa para ti

Incluso si tienes una brillante y racha innovadora dentro de ti, corres el riesgo de abandonar tus ideas empresariales, cambiar tus creencias y rendirte al pesimismo de los detractores si estás rodeado de ellos.

En cambio, si se rodea de empresarios optimistas y enérgicos que aspiran a tener éxito, es probable que cambie sus pensamientos más íntimos para pensar como ellos y se vuelva más emprendedor, incluso si nunca antes ha tenido ideas empresariales.

Si tu multitud puede cambiar tus pensamientos más íntimos, puede cambiar quién eres. Cuando escoges a las personas con las que quieres estar, eliges a la persona que quieres que sea, elige sabiamente.