martes, 12 de marzo de 2019

Patrones estructurales que predicen la conductividad de las redes

Un nuevo marco para predecir la propagación espaciotemporal de la señal en redes complejas.

por Ingrid Fadelli, función de Phys.org


Un nuevo marco para predecir la propagación de señales espaciotemporales en redes complejas.




Clasificación del zoológico de patrones de propagación. La misma red muestra diferentes patrones de propagación bajo diferentes dinámicas, por ejemplo, dinámica epidémica, regulatoria o de población. Estos diversos patrones se condensan en tres regímenes: azul, rojo y verde, cada uno con su huella dactilar de propagación distintiva. Crédito: Barzel et al.

Estudios anteriores han encontrado que una variedad de redes complejas, desde sistemas biológicos hasta redes sociales, pueden exhibir características topológicas universales. Estas características universales, sin embargo, no siempre se traducen en una dinámica de sistema similar. El comportamiento dinámico de un sistema no se puede predecir solo a partir de la topología, sino que depende de la interacción de la topología de una red con los mecanismos dinámicos que determinan la relación entre sus nodos.

En otras palabras, los sistemas con estructuras muy similares pueden mostrar comportamientos dinámicos profundamente diferentes. Para lograr una mejor comprensión de estas observaciones, un equipo de investigadores de la Universidad de Bar-Ilan y el Instituto de Estadística de la India han desarrollado recientemente un marco teórico general que podría ayudar a vincular sistemáticamente la topología de una red con su resultado dinámico, particularmente en el contexto. de propagación de la señal.

"Las redes complejas están a nuestro alrededor, desde las redes sociales, a las biológicas, neuronales y de infraestructura", dijo a Phys.org Baruch Barzel, uno de los investigadores que llevaron a cabo el estudio. "En las últimas dos décadas, hemos aprendido que a pesar de esta diversidad de campos, la estructura de estas redes es altamente universal, con diferentes redes que comparten características estructurales comunes. Por ejemplo, prácticamente todas estas redes (sociales, biológicas y tecnológicas) son extremadamente heterogéneos, con una mayoría de nodos pequeños que coexisten con una minoría de centros altamente conectados ". [Es decir que la distribución nodal sigue una ley de potencia]

El marco desarrollado por Barzel y sus colegas vincula la topología de una red a la propagación espaciotemporal observada de señales perturbativas a través de ella. Esto, en última instancia, permite a los investigadores captar el papel de la red en la propagación de información local.

"La pregunta que nos intriga en el laboratorio es: ¿Estas estructuras similares también sugieren un comportamiento dinámico similar?" Dijo Barzel. "Por ejemplo, si Facebook y nuestras redes genéticas subcelulares están conectadas por hubs, ¿significa esto que mostrarán un comportamiento similar? En términos simples, ¿la universalidad en la estructura se traduce en universalidad en el comportamiento dinámico?"


Propagación entre comunidades. ¿Qué sucede cuando las señales se cruzan entre los módulos de red? Esto depende del régimen dinámico. Azul: desbordamiento ligeramente retrasado entre los módulos. Rojo: las señales permanecen durante un tiempo extremadamente largo dentro de un módulo, luego reaparecen en el módulo vecino después de un largo retraso. Verde: las señales se cruzan libremente entre los módulos. Crédito: Barzel et al.


Los análisis realizados por los investigadores sugieren que la relación entre la estructura de un sistema y su comportamiento dinámico se basa en el equilibrio. Por un lado, a pesar de las características estructurales compartidas, las diferentes redes pueden comportarse de maneras profundamente diferentes. Por otro lado, estos comportamientos diversos están arraigados en un conjunto universal de principios matemáticos, que podrían ayudar a clasificar los sistemas en clases universales de comportamiento potencial.

"En una analogía, puedes pensar en una roca que cae y un cometa en órbita excéntrica", explicó Barzel. "Representan fenómenos extremadamente diferentes, pero las leyes de Newton muestran que ambas se rigen por la misma ecuación fundamental de la gravedad. En nuestro caso, demostramos que los diversos comportamientos dinámicos observados en redes potencialmente similares pueden predecirse mediante un conjunto de principios universales. que rigen las leyes en las que la estructura de la red se traduce en dinámica de red ".

Barzel y sus colegas comenzaron tratando de definir la palabra "comportamiento". Su paradigma, que se basa en varios años de investigación, se basa en la noción de que, si bien una red mapea los patrones de conexión entre sus nodos, su comportamiento se puede transmitir como patrones de flujo de información, lo que se conoce como propagación de señales.

Por ejemplo, una epidemia que se propaga a través de vínculos sociales podría verse como información que se propaga en forma de virus. De manera similar, según su marco, un fallo local de un componente de potencia que finalmente resulta en un apagón importante podría verse como información realizada en forma de perturbaciones de carga, mientras que un gen que activa una vía genética representa información bioquímica que viaja entre componentes subcelulares .

"Si piensa en las señales (virus, perturbaciones de carga, activación genética, etc.) como autos abstractos, entonces la red es su mapa de ruta subyacente", dijo Barzel. "Un mapa muy complejo y heterogéneo, de hecho, que admite la propagación de señales entre un nodo de origen y su objetivo. Ahora, todos sabemos que la misma red de carreteras puede exhibir patrones de tráfico altamente distintivos en diferentes condiciones. En analogía, la misma red puede llevar a reglas muy diferentes para la propagación de señales ".



La distancia temporal universal  (j → i). La 'red GPS' diseñada por los investigadores ayuda a reorganizar el 'zoológico' representado en la Imagen 1 en una propagación predecible y bien organizada. Crédito: Barzel et al.

Según Barzel, en una analogía que describe las señales como automóviles y las redes como mapas de carreteras, su marco podría verse como una "red GPS". Este "sistema GPS" puede predecir cuánto tiempo tomarán las señales para viajar a través de la red (por ejemplo, cuánto tiempo tomaría para que el virus infecte a las personas en un grupo social, para que ocurra un apagón después de una falla de alimentación inicial). para un gen para activar una ruta genética).

"Un GPS convierte una red de carreteras estática en una predicción dinámica de los tiempos de viaje dividiéndolos en segmentos y estimando el tiempo requerido para fluir a través de cada segmento", explicó Barzel. "Hacemos lo mismo aquí, utilizando herramientas matemáticas desarrolladas en nuestro laboratorio para estimar el tiempo de retraso de la señal en cada componente de la red. Al unir el rompecabezas, podemos predecir la propagación espaciotemporal a través de toda la red".

Teniendo en cuenta varios modelos dinámicos no lineales, los investigadores encontraron que las reglas de propagación de señales se pueden clasificar en tres regímenes dinámicos altamente distintivos. Estos tres regímenes se caracterizan por diferentes interacciones entre rutas de red, distribuciones de grados y dinámicas de interacción entre nodos de red.

"La física estadística es un campo bien establecido que nos ayuda a mapear cómo interactúan las partículas microscópicas. Por ejemplo, entre las moléculas de agua, conducen al comportamiento macroscópico observado del sistema, por ejemplo, fluido, transparente, etc.", dijo Barzel. "Nuestro paradigma lleva estas herramientas a un nivel completamente nuevo: las partículas son genes, neuronas, enrutadores o individuos humanos, y sus interacciones son en forma de propagación de señales. Los sistemas impulsados ​​por tales partículas / interacciones a menudo se consideran como no-sciency. no pueden predecir ni observar su comportamiento; son solo un desorden aleatorio de una mezcla no organizada. En contraste, lo que nuestro trabajo (y el de otros) está exponiendo es que tal física estadística de sistemas sociales, biológicos o tecnológicos, es de hecho alcanzable, y que detrás de sus observaciones aparentemente diversas e impredecibles se encuentra una profunda universalidad que puede ayudarnos a predecir su comportamiento ".

El estudio realizado por Barzel y sus colegas ofrece un ejemplo fascinante de cómo los marcos físicos y matemáticos podrían ayudarnos a comprender mejor los sistemas complejos de una naturaleza marcadamente diferente. La clasificación de los mecanismos de interacción del sistema en los tres regímenes principales que descubrieron podría permitir a los investigadores traducir sistemáticamente la topología de un sistema en patrones dinámicos de propagación de información, prediciendo en última instancia los patrones de comportamiento de una variedad de sistemas.

"Nuestro lema es: entender, predecir, influir", dijo Barzel. "El siguiente paso natural en nuestra investigación es la 'influencia'. ¿Podemos, por ejemplo, usar nuestras predicciones sobre la propagación para mitigar una propagación no deseada, como una epidemia o una cascada de fallas en el suministro eléctrico? Por ejemplo, utilizando intervenciones cronometradas estratégicamente en las que apague, digamos, el 15 por ciento, de los componentes para evitar la sobrecarga del 85 por ciento restante. Nuestro GPS puede ayudarnos a proyectar la propagación y, por lo tanto, diseñar un esquema de intervención inteligente ".


Léalo completo en: How community structure affects the resilience of a network
Más información: Chittaranjan Hens et al. Spatiotemporal signal propagation in complex networks, Nature Physics (2019). DOI: 10.1038/s41567-018-0409-0. https://www.nature.com/articles/s41567-018-0409-0
www.barzellab.com/ Referencia de revista: Nature Physics


No hay comentarios:

Publicar un comentario