sábado, 9 de diciembre de 2017

Redes de innovación mediante enlaces de patentes

Red de innovación
Daron Acemoglu, Ufuk Akcigit, y William R. Kerr
PNAS

Significado
Describimos la fuerza y la importancia de la red de innovación que une los campos de la tecnología de patentes. Cuantificamos que los avances tecnológicos salen de campos individuales y enriquecen el trabajo de las tecnologías vecinas, pero estos efectos indirectos también están localizados y no son universales. Así, los avances de la innovación en una parte de la red pueden afectar significativamente a las disciplinas cercanas, pero rara vez a las muy lejanas. Comprobamos la fuerza y la importancia estable de la red de innovación mostrando cómo las innovaciones pasadas pueden predecir futuras innovaciones en otros campos en horizontes de 10 años. Esta mejor comprensión de cómo ocurre el progreso científico y de cómo los inventos construyen sobre sí mismos es una entrada importante a nuestras representaciones del proceso acumulativo de la innovación y de sus consecuencias del crecimiento económico.
Resumen
El progreso tecnológico se basa en sí mismo, con la expansión de la invención en un dominio propulsando el trabajo futuro en campos vinculados. Nuestro análisis utiliza 1,8 millones de patentes de EE.UU. y sus propiedades de citación para mapear la red de innovación y su fuerza. Las estructuras de la red de innovación pasada se calculan usando patrones de citación en las clases de tecnología durante 1975-1994. La interacción de esta estructura de red preexistente con el crecimiento patentado en los campos tecnológicos de la corriente ascendente tiene poder predictivo fuerte sobre la innovación futura después de 1995. Este patrón es consistente con la idea de que cuando haya más innovación anterior para una clase de tecnología en particular, Tecnología innova más.

Introducción

El progreso tecnológico y científico impulsa el crecimiento económico y el bienestar a largo plazo. Las teorías prominentes describen este proceso como un proceso acumulativo en el que las nuevas innovaciones se basan en los logros del pasado, utilizando la frase descriptiva de Newton de "pararse sobre los hombros de los gigantes" (por ejemplo, las referencias 1 y 2). Varios estudios proporcionan evidencia que respalda este punto de vista y, más generalmente, el desarrollo del conocimiento está incrustado en un paisaje de científicos individuales, institutos de investigación, actores del sector privado y agencias gubernamentales que modelan la tasa fundamental y la dirección de nuevos descubrimientos. A pesar de esta creciente literatura, nuestra comprensión de cómo el progreso en un área tecnológica está vinculada a los avances previos en los campos tecnológicos de la corriente ascendente es limitada. Las cuestiones abiertas, pero importantes, incluyen la estabilidad a largo plazo de cómo se comparte el conocimiento a través de los campos tecnológicos, el ritmo y el momento de la transferencia de conocimiento, y cómo deben estar conectados los campos ascendentes para tener un impacto material en una tecnología focal. Este documento proporciona algunas pruebas cuantitativas sobre estas y otras cuestiones relacionadas.

Mostramos que una "red de innovación" estable actúa como un conducto de este proceso acumulativo de progreso tecnológico y científico. Analizamos 1.8 millones de patentes estadounidenses y sus propiedades de citación para mapear la red de innovación y su fuerza. Las estructuras de la red de innovación pasada se calculan usando patrones de citación en las clases de tecnología durante 1975-1994. La interacción de esta estructura de red preexistente con el crecimiento de patentes en los campos tecnológicos "aguas arriba" tiene un fuerte poder predictivo sobre la innovación futura "posterior" después de 1995. Destaca que el 55% de la variación agregada en los niveles de patentes entre tecnologías para 1995-2004 puede explicarse por Variación en las patentes de aguas arriba; Este poder explicativo es de 14% cuando se utiliza la variación de panel dentro de cada campo (el valor R2 de las regresiones se tabula a continuación). Los sectores detallados que han visto un crecimiento más rápido de las patentes en sus campos de tecnología en los últimos 10 años son mucho más propensos a patentar hoy.

Este patrón es consistente con la idea de que cuando hay más innovación pasada para que una clase de tecnología particular se base en, entonces esa clase de tecnología innova más. Como ejemplo, utilizando subcategorías de patentes definidas a continuación, "Químicos: Revestimiento" y "Nuclear y rayos X" muestran tasas de patentes similares en 1975-1984. Antes de 1995, los patrones de citas indican que "Nuclear & X-ray" atrajo alrededor del 25% de sus insumos de innovación de "Measurement & Testing Electrical", mientras que "Chemicals: Coating" tenía una dependencia similar de "Chemicals Misc. El campo de aguas arriba creció sustancialmente menos durante 1985-1994 que el segundo en términos de nuevas patentes. En el período de 10 años después de 1995, "Chemicals: Coating" exhibe el doble de crecimiento de "Nuclear & X-rays." La heterogeneidad de la red indica que el desarrollo del conocimiento no es global, en el sentido de que los campos comparten un pool agregado de Conocimiento, ni local, en el sentido de que cada campo se construye sólo sobre sí mismo.

Es útil motivar nuestro enfoque con los modelos estándar de crecimiento endógeno y progreso tecnológico en la economía, que postulan una función de producción de nuevas ideas de la forma

ΔN(t)=f(N(t),R(t)),

donde N (t) es la reserva de ideas,ΔN (t) es el flujo de nuevas ideas producidas, y R (t) son los recursos que se utilizan para producir estos nuevos ideas (p. ej., científicos). Aunque algunos estudios estiman el impacto del inventario de ideas, N (t), sobre el flujo de nuevas ideas (por ejemplo, si hay rendimientos crecientes o externalidades de "pesca"), la mayoría de la literatura toma la entrada en la función de producción de nuevas ideas en cada campo para ser su propio inventario de ideas o un conjunto de conocimiento agregado que abarca todos los campos. Damos un paso hacia la apertura de esta caja negra y la medición de la dependencia heterogénea de la creación de nuevas ideas sobre el stock existente de ideas mediante el estudio de redes de innovación.

Suponemos que las nuevas innovaciones en tecnología j∈ {1,2, ..., J} dependen de innovaciones pasadas en todos los demás campos a través de una red de innovación. Suprimiendo la variable de recursos R (t) por simplicidad y asumiendo una forma lineal, podemos escribir

ΔNJ×1(t)=αMJ×JNJ×1(t),

donde ΔNJ×1(t)  NJ×1(t) son, respectivamente, el vector J × 1 de tasas de innovación y el stock de conocimiento en las clases de tecnología J en el tiempo t, y  
es una matriz J × J que representa la red de innovación: la cantidad que una clase construye sobre las reservas de conocimiento de otras clases. Dado el escalar α y nuestro enfoque en el crecimiento relativo de las tecnologías, podemos normalizar las sumas de fila de 
a uno. El caso en el que las nuevas innovaciones dependen simétricamente de un stock de tecnología para toda la economía está representado por todas las entradas en 
que son iguales a 1 / J; el caso en el que los campos solo se basan en su propio stock de conocimiento está dado por la matriz de identidad.

Analizamos patentes de utilidad otorgadas entre 1975-2009 por la Oficina de Patentes y Marcas de los Estados Unidos (USPTO). Cada registro de patente proporciona información sobre la invención (por ejemplo, clasificaciones de tecnología, citas de patentes sobre las que se basa la invención actual) y los inventores que presentan la solicitud. Analizamos 1.8 millones de patentes solicitadas en 1975-2004 con al menos un inventor viviendo en un área metropolitana de los EE. UU. La fecha de finalización de 2004 permite una ventana de 5 años para revisiones de patentes. En nuestros datos, el 98% de las revisiones de patentes se completan dentro de esta ventana.

La Fig. 1 describe la red de innovación 1975-1984 en forma de matriz. [Hall et al. (14) describen más detalladamente los datos de patente. Los estudios de los efectos secundarios intersectoriales datan al menos de Scherer (15) y Verspagen (16). Schnitzer y Watzinger (17) proporcionan un ejemplo reciente.] La restricción de año se refiere a las fechas de las patentes citadas, y se requiere que las patentes de citación futura estén dentro de los 10 años de la patente citada. La ventana de 10-y para citas hacia adelante mantiene un número constante de observaciones por edad de difusión. Las tecnologías de USPTO a menudo se agrupan en una jerarquía de tres niveles: 6 categorías, 36 subcategorías y 484 clases. Esta matriz enumera subcategorías y sus categorías principales; nuestro análisis empírico considera la variación a nivel de subcategoría y clase.


Figura 1.
Matriz de citas 1975-1984. Cada fila describe la composición de campo de las citas hechas por la subcategoría de tecnología indicada en el lado izquierdo. Las entradas en los campos de tecnología citados para cada subcategoría de tecnología de citas suman al 100%. Las diagonales -citas del propio campo, la mayoría de las citas- se excluyen del cálculo, pero se les da sombreado oscuro para referencia. El Apéndice SI, Fig. 1 muestra la red 1975-2004 y subperíodos adicionales.

Cada fila proporciona la composición de las citas realizadas por el campo de tecnología de referencia, que se suman al 100% en la fila. Las citas propias (citas que hacen los campos) representan la mayoría de las citas y, para fines visuales, se les da un sombreado oscuro en la Fig. 1. En nuestro trabajo empírico, nos enfrentamos a un dilema: una contabilidad de crecimiento completa incluye cómo acumulativa el progreso tecnológico en un campo afecta el propio desarrollo futuro del campo. De hecho, los derrames de tecnología propia suelen ser el canal más importante de desarrollo acumulativo de conocimientos y también se conectan con el concepto de capacidad de absorción, donde la investigación en el propio campo prepara a uno para absorber el conocimiento externo de otros campos (por ejemplo, referencias 18 y 19). ) Sin embargo, es muy difícil establecer convincentemente la importancia de la red de innovación cuando se mira dentro de los campos individuales, porque el progreso tecnológico para un campo a lo largo del tiempo puede estar relacionado endógenamente con su progreso pasado y futuro, así como con factores externos, y también mostrar correlación por otras razones (p. ej., aumento de los niveles de financiamiento del gobierno, condiciones dinámicas de la industria). Una contribución de nuestro análisis basado en red que usa el progreso de la tecnología upstream fuera de un campo individual, moderado por una estructura de red preexistente, para predecir la innovación futura es demostrar la importancia de este proceso de desarrollo de conocimiento en un entorno empírico que minimiza esta difícil identificación desafíos.

Por lo tanto, presentamos nuestros hallazgos a continuación de dos maneras. Una ruta es considerar solo la red externa, que excluye las citas propias y los derrames dentro del campo para aislar mejor las propiedades de la red. Escribimos nuestras próximas ecuaciones para este caso. Para ofrecer la perspectiva de crecimiento completa, también informamos los resultados de la red completa que incluye los derrames propios. Formalmente, una entrada en la matriz  a partir de una tecnología de citación j (fila) a una tecnología citada j '(columna) es

mjj'=Citationsjj'kjCitationsjk.

En esta representación, la notación jj 'designa una cita de patente de la tecnología j a j', que a su vez significa conocimiento que fluye de la tecnología j' a j. Para el cálculo completo de la red, la suma del denominador incluye k = j.

La Fig. 1 destaca la heterogeneidad en los flujos de tecnología. Las diagonales del bloque indican que las subcategorías dentro de cada categoría principal tienden a estar relacionadas entre sí, pero estos flujos varían sustancialmente en intensidad y muestran asimetrías importantes. Por ejemplo, las patentes en "Computadoras: periféricos" tienden a sacar más de "Computadoras: Comunicaciones" que a la inversa, porque "Computadoras: Comunicaciones" se basa más en subcategorías eléctricas y electrónicas. También hay ejemplos prominentes de conexiones entre categorías de tecnología, como el enlace entre "Compuestos orgánicos" y "Drogas". La figura 2 representa esta información en un formato de red, que agrupa en el espacio 2D las relaciones más fuertes en una proximidad más cercana.



Figura 2.
Red de innovación 1975-1984. Mapeo de red del sistema de patentes utilizando subcategorías de tecnología. Los nodos de color similar se extraen de la misma categoría del sistema USPTO. El ancho de las líneas de conexión indica la fuerza de los flujos tecnológicos, con flechas que se utilizan en casos de fuerte asimetría. Las conexiones deben representar al menos el 0.5% de las citas salientes realizadas por una subcategoría tecnológica. SI Apéndice, Figs. 2-6 muestra variaciones y propiedades de red.

La red de innovación es bastante estable. Calculando  para los períodos de 10 años de 1975-1984, 1985-1994 y 1995-2004, las correlaciones y correlaciones de rangos de los valores de las celdas en horizontes de 10 y están por encima de 0.9; en un horizonte de 20 y, ambos están por encima de 0.8. SI Apéndice, Figs. 1-3 muestran estructuras de red comparables cuando se usan umbrales más estrictos para incluir enlaces / conexiones de red, cuando se examinan citas sin la normalización de modo que las citas salientes de cada tecnología se ponderan por igual y cuando se usan horizontes de datos más largos. SI Apéndice, Figs. 4-6 muestran tres diagnósticos frecuentemente calculados para los nodos de la red: importancia en grados, cercanía e interinidad. Un tema común, que también es evidente en la Fig. 2, es que muchas áreas de tecnología de alto perfil (por ejemplo, "Drogas") están en la periferia de la red de innovación. Tecnologías como "Dispositivos eléctricos" y "Procesamiento / manejo de materiales" ocupan posiciones más centrales.

Aprovechamos la considerable heterogeneidad en la velocidad a la que se difunde el conocimiento: ¿cuántos años después de la invención las patentes en tecnología j' reciben típicamente citas de la tecnología j? Construimos nuestra matriz de red de innovación para modelar separadamente cada año del proceso de difusión:

CiteFlowjj',a=Citationsjj',aPatentsj',


donde CiteFlow cuantifica la velocidad a la que las patentes en tecnología jitan patentes en j () para cada uno de los primeros 10 años después de la invención de esta última. * Esta estructura aumentada amplía el modelo teórico simple descrito con la matriz M para permitir procesos de difusión de conocimiento más complejos que dependen de la edad de la invención. †

Para predecir patentes futuras, combinamos la red preexistente con el desarrollo de tecnología que ocurre dentro de una ventana de 10 años antes del año focal t. Defínase a Pj, tP ^ j, t como la patente esperada en tecnología j para un año t después de 1994. Nuestra estimación de 
 combina patentes hechas en los 10 años anteriores con un retardo de difusión adicional de a = [ 1,10] a = [1,10] años,

Pˆj,t=kja=110CiteFlowjk,aPk,ta,

donde es la patente en la tecnología k en un retraso de difusión del año t. Como ejemplo, para una patente de la tecnología j' solicitada en 1990, modelamos su impacto para la tecnología j en 1997 al observar el impacto promedio que ocurrió con un retraso de difusión de 7 años durante el preperíodo. La suma doble en el cálculo de P ^ j, t repite este proceso para cada clase potencial de tecnología ascendente y retraso de difusión. Además de la red que se estima a partir de las interacciones de preperíodo, nuestro cálculo requiere que las patentes anteriores preceden a las predicciones aguas abajo en al menos 1 año (es decir, a≥1a≥1). Para el cálculo completo de la red, el primer término de suma incluye de nuevo k = j.

La primera fila de la Fig. 3A informa la fuerte relación de niveles entre los valores predichos ( y los valores reales () utilizando la variación de subcategoría en un formato de registro. Esta estimación incluye 360 ​​observaciones a través del análisis de 36 subcategorías en cada año durante 1995-2004; cada subcategoría está ponderada por su nivel inicial de patentamiento. Un aumento del 10% en las patentes esperadas se asocia con un aumento del 8% en las patentes reales cuando se considera la red externa. Divulgamos SE que son robustos contra la correlación serial dentro de una subcategoría. Esta especificación explica alrededor del 55% de la variación agregada en los niveles de patentamiento de 1995-2004. La fuerza empírica de la estimación de la red completa es aún más fuerte, con un aumento del 10% en las patentes esperadas asociadas con un aumento del 9% en las patentes reales.



Fig. 3
Análisis de la red de innovación. (A) Regresiones de las patentes reales durante 1995-2004 sobre las patentes previstas calculadas utilizando la red de innovación de 1975-1994 y el crecimiento en las subcategorías de tecnología aguas arriba anterior al año focal. El análisis de "Controles de campo y tiempo" informa un análisis de datos de panel donde primero eliminamos los promedios de cada subcategoría y cada año de los valores reales y predichos. En los análisis de "red externa solamente", consideramos las patentes previstas debido a las patentes anteriores a la subcategoría de patentes focales. (B) Repetición del análisis para clases de patentes detalladas que mantienen más de cinco patentes por año. (C) Regresiones utilizando la muestra de clase de patente, donde calculamos las patentes acumulativas reales y predictivas durante 1995-2004 para una clase de patente. Después de informar los efectos iniciales en el formato acumulativo, contrastamos el efecto ascendente focal con un efecto descendente inverso. A continuación, desglosamos el estímulo para demostrar los efectos indirectos localizados.

Aunque poderoso, hay varias preocupaciones potenciales con el enfoque simple. En primer lugar, la persistencia en los tamaños relativos de los campos tecnológicos puede llevar a una exageración de la importancia de la red. Del mismo modo, las fluctuaciones agregadas en las tasas anuales de patentes de todos los campos podrían dar lugar a un énfasis excesivo en la importancia de los campos en sentido ascendente. Para abordar, consideramos una regresión de panel que incluye controles de campo y tiempo,

ln(Pj,t)=βln(Pˆj,t)+ϕj+ηt+εj,t,

donde  y  son tasas reales y esperadas de patentes para la tecnología j en el año t (
 es un término de error). La estimación incluye efectos fijos para las subcategorías () que eliminan sus tamaños a largo plazo; asimismo, los efectos fijos por años () eliminan los cambios agregados en las tasas de subvención USPTO comunes a todas las tecnologías, de modo que la identificación del parámetro β proviene únicamente de variaciones dentro de los campos. Intuitivamente, β capta si el patentamiento real en la tecnología j es anormalmente alto en relación con su tasa a largo plazo cuando se predice que está basado en las tasas de innovación anteriores. Una estimación β de uno indicaría una relación de uno a uno entre el patentado previsto y el real después de condicionar estos controles.

Estimamos en la segunda fila de la Fig. 3A un valor estadísticamente significativo y económicamente sustancial de β: 0,85 (SE = 0,17) 0,17). Aunque es menor que 1, el coeficiente estimado muestra una relación muy fuerte entre el patentado previsto y el real. El Apéndice SI, Fig. 7 proporciona representaciones visuales de estas estimaciones a nivel de subcategoría. Esta figura muestra que nuestros resultados no están impulsados ​​por valores atípicos o estrategia de ponderación.

La Fig. 3B muestra patrones muy similares cuando se usa la variación entre clases de patentes más detalladas. Consideramos en esta estimación 353 clases de patentes que mantienen al menos cinco patentes por año. La variación de niveles es muy similar a la encontrada usando subcategorías en la Fig. 3A. Las estimaciones del panel son más pequeñas, lo que sugiere un aumento del 3-4% en las patentes por cada aumento del 10% en las patentes esperadas, pero siguen siendo bastante importantes económica y estadísticamente. SI Apéndice, Figs. 8-9 proporcionan representaciones visuales de estas estimaciones a nivel de clase.

La Fig. 3C muestra un segundo enfoque para cuantificar la fuerza de la red de innovación. Hacemos una regresión de las patentes acumulativas reales durante 1995-2004 para cada clase en su valor esperado basado en la red de innovación y un control para niveles históricos de patentes,

ln(P9504j)=βln(Pˆ9504j)+γln(P8594j)+εj.


Este enfoque permite una mayor variación en la forma en que la estructura de retraso de la red de innovación impacta el cambio tecnológico actual; ahora estimamos que un aumento del 10% en la innovación ascendente corresponde a un aumento del 3,5% en las patentes futuras. El Apéndice SI, Fig. 10 proporciona una representación visual.

Este enfoque acumulativo es una buena plataforma para verificaciones y extensiones de robustez. Nuestro primer control es comparar nuestro crecimiento de patentes esperado debido al estímulo aguas arriba con una métrica paralela desarrollada utilizando estímulos aguas abajo. Nuestra cuenta enfatiza las contribuciones ascendentes que fluyen a través de la red de innovación, pero es natural preocuparse de si nuestras estimaciones están recogiendo choques locales amplios en la tecnología o un tirón del lado de la demanda. Debido a que la red de innovación es asimétrica, podemos probar esta posibilidad directamente, y confirmamos en la figura 3 que los flujos ascendentes están jugando un papel central. El Apéndice SI, Tabla 1, documenta muchos controles de robustez adicionales: controlando las tendencias de la tecnología parental, ajustando los pesos de las muestras, usando formulaciones de crecimiento, considerando la difusión de segunda generación, § y más. Los resultados son sólidos para descartar una sola subcategoría, aunque dependen de que al menos se retengan algunos campos de computadora y comunicación. También encontramos estos resultados cuando usamos el sistema de Clasificación Internacional de Patentes.

Finalmente, al introducir la matriz , notamos dos casos polares comunes a la literatura: todas las entradas son iguales a 1 / J (campos que se basan en un stock de conocimiento común) o la matriz de identidad (campos que se basan únicamente en conocimiento propio). La fila inferior de la Fig. 3 y el Apéndice SI, Tabla 2, cuantifican que la verdad se encuentra entre las tecnologías basadas en unas pocas clases clave que les proporcionan estimulantes de la innovación. Encontramos una conexión robusta de innovación a las 10 clases de patentes aguas arriba más importantes, que luego disminuye. Esta relación también se muestra utilizando la estructura de categoría de subcategoría, aunque este enfoque es más cruda dado el conocimiento fluye a través de los límites tecnológicos. Esta heterogeneidad de red indica que el desarrollo de conocimiento no es global, en el sentido de que los campos comparten colectivamente un conjunto agregado de conocimiento. ni local, en el sentido de que cada campo se construye solo sobre sí mismo.

Para concluir, nuestra investigación descubre que los desarrollos tecnológicos preliminares juegan un papel importante y mensurable en el ritmo y la dirección futuros de las patentes. Una mejor explicación de la red de innovación y sus flujos asimétricos nos ayudará a modelar el proceso acumulativo de descubrimiento científico de una manera más nítida. Una mejor comprensión de estas características puede ser una ayuda para los responsables políticos. Por ejemplo, el descubrimiento de que la investigación aguas arriba es muy importante para el crecimiento implica que si la investigación y el desarrollo disminuyen en un período, los efectos se sentirán años después. Este documento ha enfocado estos temas en un entorno que considera todas las patentes e invenciones, cuyo desarrollo podría considerarse ciencia e innovación normal o regular. Un camino interesante para futuras investigaciones es considerar si los saltos grandes se comportan en un formato similar al que se muestra aquí. También creemos que este enfoque puede ser empujado a considerar la variación a nivel regional y de la empresa, lo que puede ayudarnos a comprender el impacto causal de patentar en los resultados económicos y comerciales.

Notas a pie de página

1 A quién debe dirigirse la correspondencia. Correo electrónico: daron@mit.edu.
Contribuciones del autor: D.A., U.A., y W.R.K. realizó investigaciones, analizó datos y escribió el documento.

Revisores: B.F.J., Northwestern University; y P.S., Georgia State University.

Los autores declaran no tener conflicto de intereses.

* Los retrasos de tiempo amplían consistentemente el impacto de la tecnología descendente. Un año después de la invención, el 81% de las referencias bibliográficas pertenecen a la misma categoría (el 62% pertenece a la misma clase de patentes, el 10% pertenece a otra clase de patentes dentro de la misma subcategoría y el 9% a otra categoría dentro de la misma categoría). Después de 10 años, el 75% de las citas se producen dentro de la misma categoría de patente (respectivamente, 51%, 12% y 12%).

† Considerando que las Figs. 1 y 2 están normalizados para sumar 100% para una tecnología de citas que usa la matriz de red M, dejamos esta medida relativa a las patentes de línea de base para permitir el uso directo con las tasas de patentes futuras por tecnología. Las patentes difieren sustancialmente en el número de citas que hacen, y ponderamos las citas de manera que cada patente citada recibe la misma importancia. Nuestros resultados son robustos a diferentes enfoques para tratar con patentes que no hacen citas e instancias donde las patentes enumeran múltiples tecnologías.

‡ Para las estimaciones de panel, graficamos en estas figuras del apéndice los valores residuales de las patentes reales contra las patentes previstas. Los valores residuales se calculan como las partes no explicadas de una regresión de ln (Pj, t) ln (Pj, t) en los efectos fijos φjφj y ηtηt (un proceso similar para las series de patentes pronosticadas). Convenientemente, la pendiente de la línea de tendencia en esta figura es igual a β.

§Como algunos análisis de red consideran las relaciones de alto orden (por ejemplo, Leontief inverso en la teoría de la producción), las relaciones de primer orden son suficientes cuando se observan directamente los resultados de intermediación. Como ejemplo, considere j → j '→ kj → j' → k, con la tecnología k arriba de j'j '. Debido a que modelamos directamente el patentamiento en tecnología j'j 'para los resultados posteriores en j, ya hemos incluido cualquier posible estímulo ascendente de k. SI Apéndice, la Tabla 1 muestra resultados similares usando difusión de segundo orden cuando se excluye la relación de primer orden.

¶Las 20 principales categorías ascendentes representan el 80% de las citas y son distintas de las subcategorías. Entre los 10 mejores, el 27% de las citas provienen de la misma subcategoría y otro 27% proviene de otras subcategorías dentro de la misma categoría. Entre los próximos 10, estas cifras son 16% y 30%, respectivamente.

Este artículo contiene información de respaldo en línea en www.pnas.org/lookup/suppl/doi:10.1073/pnas.1613559113/-/DCSupplemental.


Referencias

  1. Romer P (1990) Endogenous technological change. J Polit Econ 98(5):1002–1037. Google Scholar 
  2. Aghion P, Howitt P  (1992) A model of growth through creative destruction. Econometrica 60(2):323–351. CrossRef  Web of Science  Google Scholar
  3. Fleming L (2001) Recombinant uncertainty in technological search. Manage Sci 47(1):117–132. CrossRef  Google Scholar
  4. Wuchty S,  Jones BF,  Uzzi B  (2007) The increasing dominance of teams in production of knowledge.Science 316(5827):1036–1039. Abstract/FREE Full Text
  5. Azoulay P, Ding W, Stuart T (2009) The impact of academic patenting on the rate, quality and direction of (public) research output. J Ind Econ 57(4):617–676. Google Scholar
  6. Furman J,  Stern S  (2011) Climbing atop the shoulders of giants: The impact of institutions on cumulative research. Am Econ Rev 101(5):1933–1963. CrossRef Google Scholar
  7. Lerner J,  Stern S  (2012) The Rate and Direction of Inventive Activity Revisited (National Bureau of Economics, Cambridge, MA). Google Scholar
  8. Franzoni C,  Scellato G,  Stephan P  (2012) Foreign-born scientists: Mobility patterns for 16 countries.Nat Biotechnol 30(12):1250–1253. CrossRef Medline Google Scholar 
  9. Bloom N, Schankerman M, Van Reenen J  (2013) Identifying technology spillovers and product market rivalry. Econometrica 81(4):1347–1393. CrossRef Web of Science Google Scholar
  10. Williams HL (2010) Intellectual property rights and innovation: Evidence from the human genome. J Polit Econ 121(1):1–27. Medline Google Scholar
  11. Freeman RB, Huang W (2014) Collaboration: Strength in diversity. Nature 513(7518):305. CrossRef Medline Google Scholar
  12. Konig M,  Liu Z, Zenou Y (2014) R&D networks: Theory, empirics and policy implications. Working Paper No. 142 (University of Zurich, Zurich). Available at www.econ.uzh.ch/dam/jcr:a8bc201d-da15-4249-8ea6-9e4c1681049b/paper_rnd_sub.pdf.
  13. Glasso A, Schankerman M (2015) Patents and cumulative innovation: Causal evidence from the courts. Q J Econ 130(1):317–369. Abstract/FREE Full Text
  14. Hall B,  Jaffe A, Trajtenberg M  (2001) The NBER patent citations data file: Lessons, insights, and methodological tools. NBER Working Paper No. 8498 (National Bureau of Economic Research, Cambridge, MA). Available at www.nber.org/papers/w8498.
  15. Scherer FM (1984) in Using Linked Patent Data and R&D Data to Measure Technology Flows. R & D, Patents and Productivity, ed Griliches Z (Univ of Chicago Press, Chicago), pp 417–464. Google Scholar
  16. Verspagen B (1997) Measuring intersectoral technology spillovers: Estimates from the European and US patent office databases. Econ Sys Res 9(1):47–65.  CrossRef  Google Scholar
  17. Schnitzer M, Watzinger M (2014) Measuring the spillovers of venture capital, Annual Conference 2014: Evidence-based Economic Policy, September 7–10, 2014, Hamburg, Germany. Available at econpapers.repec.org/paper/zbwvfsc14/100318.htm.
  18. Cohen W, Levinthal D  (1990) Absorptive capacity: A new perspective on learning and innovation.Adm Sci Q 35(1):128–152. CrossRef Web of Science Google Scholar
  19. Belderbos R, Mohen P (2013) Intersectoral and international R&D spillovers. SIMPATIC Working Paper 02 (Bruegel, Brussels). Available at simpatic.eu/intersectoral-and-international-rd-spillovers.
.

jueves, 7 de diciembre de 2017

Análisis de datos y sitios para funciones de SEO

SEO: cómo los datos pueden revelar errores y oportunidades ...
Virgile Juhan | JDN





La explotación de datos para mejorar el SEO fue uno de los principales temas de SEO Camp'us. Al final del día, dos retroalimentaciones instructivas, incluida la de Priceminister..

La explosión de datos también concierne a los SEO, y la explotación de este depósito de información está comenzando a madurar y tiene un fuerte impacto en la gestión del SEO. Esta es una de las lecciones que se pueden aprender de SEO Camp'us, el evento estrella de SearchBridge el 9 y 10 de marzo de 2017, del cual JDN fue socio.

"Los datos pueden provenir de Google y sus herramientas, como su webmaster. Pero también hay herramientas de terceros, tales Botify, Yooda o Majestic que puede proporcionar aún más datos. Cruzarlos a continuación, utilizando todos estos datos se utiliza para salir de una lógica empírica para la construcción de las estrategias impulsadas por datos-, "observó Olivier Tassel, consultor de NetBooster en su precisión en base a este tema de la conferencia (" empíricamente SEO a SEO de datos centrada en cómo su estrategia corporativa en 2017? "). Este especialista también señala que todos estos datos pueden ser monitorizados con soluciones personalizables de cuadros de mando muy flexibles y potentes, además de código abierto, como Superserie, desarrollado por Airbnb. Arriba: hábilmente explotados todos estos datos se pueden alimentar los sistemas de aprendizaje automático, y por lo tanto abierto a la senda predictiva.

Un DataViz para la detección de un fallo de funcionamiento

Para tomar un ejemplo la primera base, los datos de una herramienta útil SEO pueden ser explotadas por una solución DataViz para extraer rápidamente la atención a un problema importante. El caso fue presentado por Simon Georges, consultor de Makina Corpus. Este experto SEO Drupal y utilizó por primera vez el rastreo Screaming Frog herramienta para navegar por un sitio como Google haría. Gritando rana está en la lista que incluye las direcciones URL visitadas dentro de este sitio web. entonces esta lista se ha subido a la herramienta DataViz Gephi de código abierto. Y luego, sorpresa: si el sitio se supone que tiene tres secciones, una cuarta apareció muy claramente en el gráfico. la respuesta del propietario del sitio: "se ve como un tumor". Y eso es todo, de hecho.


DataViz realizado por Gephi que muestra 4 colores correspondientes a las cuatro partes de un sitio ... que se supone que hace que el recuento 3! © Simon Georges

Lo que pasa es que el sitio de la casa incluye un calendario de eventos. En esta agenda, no eran tan absolutamente clásico, un enlace "próximo mes" y "mes anterior". El rastreador se vio envuelto en un sinfín de estos enlaces. Volvió décadas atrás, y lo mismo antes. Esta es la cuarta sección del sitio, que aparece muy visual (púrpura aquí-contra) en Gephi, y por lo tanto en realidad corresponde a ... un calendario. "Luego, cuando se estudió el verdadero rastreo robot de Google, se confirmó que estaba tomando exactamente el mismo camino que el robot Screaming Frog. Por lo tanto, Google desperdiciando su tiempo para rastrear páginas sin ningún interés, mientras que para otras páginas con un gran potencial de SEO fueron descuidados o no del todo exploradas", lo que lleva Simon Georges.

SEO predictivo en PriceMinister

También hay ejemplos mucho más avanzadas en el campo de la minería de datos, predictivo y tendiendo a. SEO Priceminister Cecile Beroni, ha compartido su trabajo en el campo de datos grandes. Su entorno es uno de los sitios con alto volumen, un sitio con no menos de 24 millones de páginas, incluyendo 17 millones indexadas en Google. Por supuesto, SEO es altamente estratégica, con 30 a 40% de las visitas SEO (excluyendo consultas decir "marca", navegación).


Cécile Beroni, Priceminister SEO para SEO Camp'us © 2017 JDN

"Queríamos utilizar los primeros datos disponibles para mejorar la indexación de Google. El propósito era específicamente para aumentar el número de páginas indexadas o mejorar la rotación de URL rastreadas," resume SEO. Para este primer proyecto, el rastreo de Google es estudiado en profundidad, y cambios en el sitio para ayudar a guiar robots de Google ayudaron mucho mejor predecir qué páginas serán cubiertos. Un algoritmo de casa, confidencial, se ha desarrollado.

"Ahora sabemos que el 80% de las URL que Google rastree, mientras que en el principio era el 61%," dice SEO. "Al final, el número de páginas que se arrastró en realidad no ha aumentado. Especialmente la rotación viajó URL que ha sido mejorado." PriceMinister puede entonces "empujar" y almacenar millones de URL estratégicas - una cifra que tiende a limitar su caché solución sin barniz. "Anteriormente, Google podría obtener más de seis meses para recorrer todo el catálogo, ahora Google puede tener acceso a un mayor número de direcciones URL en un tiempo bastante corto. Este fue nuestro principio", recuerda Cécile Béroni.

Luego fue el blanco de una mejor predicción de palabras clave estratégicas "las principales palabras clave",. Para este proyecto, el sitio era capaz de confiar en un equipo interno (SEO, inteligencia de negocios, grandes volúmenes de datos), sino también en un proveedor de servicios externo, Authoritas, que proporciona gran cantidad de datos. Entre ellos: las palabras clave sobre la que se colocan Priceminister con su volumen de búsquedas y competidores que también están en sus resultados de búsqueda, entre otros. "Era necesario poner de relieve las oportunidades", dijo Seo. Ellos tomaron la forma de una lista bastante cruda de 2,4 millones de palabras clave que podrían apuntar sitio de comercio electrónico.

"A continuación, tuvo que trabajar en la lista, respondiendo a varias preguntas: ¿Tenemos el producto afectado por palabra clave ¿Cuál es la competencia para esa palabra clave, la presencia de Google Shopping también puede dar pistas interesantes de este tema ", detalla el empleado PriceMinister. Una vez que estos filtros producen, 1,4 millones de nuevas páginas de destino fueron creados o mejorados. El resultado anunciado por el sitio del comerciante es espectacular: 40% más de visibilidad en los resultados de reensamblaje de Google, según la herramienta de Searchmetrics.