Veinte años de ciencia de redes
La idea de que todos en el mundo están conectados con todos los demás por solo seis grados de separación fue explicada por el modelo de red del 'mundo pequeño' hace 20 años. Lo que parecía ser un hallazgo de nicho resultó tener enormes consecuencias.Alessandro Vespignani | Nature
Nature 558, 528-529 (2018)
doi: 10.1038/d41586-018-05444-y
En 1998, Watts y Strogatz[1] introdujeron el modelo de redes de "mundo pequeño", que describe la agrupación y las breves separaciones de nodos que se encuentran en muchas redes de la vida real. Aún recuerdo vívidamente la discusión que tuve con mis colegas físicos estadísticos en ese momento: el modelo fue visto como algo interesante, pero parecía ser simplemente una salida exótica de las estructuras de red regulares, parecidas a grillas, a las que estábamos acostumbrados. Pero cuanto más asimilados fueron los científicos de diferentes campos, más evidente fue su profunda implicación para nuestra comprensión del comportamiento dinámico y las transiciones de fase en fenómenos del mundo real que van desde los procesos de contagio a la difusión de la información. Pronto se hizo evidente que el documento había iniciado una nueva era de investigación que conduciría al establecimiento de la ciencia de redes como un campo multidisciplinario.
Antes de que Watts y Strogatz publicaran su artículo, los algoritmos arquetípicos de generación de redes se basaban en procesos de construcción como los descritos por el modelo Erdös-Rényi[2]. Estos procesos se caracterizan por una falta de conocimiento de los principios que guían la creación de conexiones (enlaces) entre los nodos en las redes, y hacen la suposición simple de que los pares de nodos se pueden conectar al azar con una probabilidad de conexión dada. Tal proceso genera redes aleatorias, en las que la longitud de camino promedio entre dos nodos cualquiera de la red, medida como el menor número de aristas necesarias para conectar los nodos, se escala como el logaritmo del número total de nodos. En otras palabras, la aleatoriedad es suficiente para explicar el fenómeno del mundo pequeño popularizado como "seis grados de separación" 3,4: la idea de que todos en el mundo están conectados con todos los demás a través de una cadena de, como máximo, seis conocidos mutuos.
Sin embargo, la construcción aleatoria no alcanzó a capturar el carácter local de los nodos observados en las redes del mundo real. La exclusividad se mide cuantitativamente mediante el coeficiente de agrupamiento de un nodo, que se define como la relación entre el número de enlaces entre los vecinos de un nodo y el número máximo de dichos enlaces. En las redes del mundo real, la agrupación de nodos se ejemplifica claramente con el axioma "los amigos de mis amigos son mis amigos": la probabilidad de que tres personas sean amigos entre sí en una red social, por ejemplo, es generalmente mucho más alta de lo que sería predicho por una red modelo construida usando el proceso simple y estocástico.
Para superar la dicotomía entre aleatoriedad y clichishness, Watts y Strogatz propusieron un modelo cuyo punto de partida es una red regular que tiene un gran coeficiente de agrupamiento. La estocasticidad se introduce luego al permitir que los enlaces se vuelvan a cablear al azar entre los nodos, con una probabilidad fija de recableado (p) para todos los enlaces. Al sintonizar p, el modelo interpola efectivamente entre una red regular (p → 0) y una red completamente aleatoria (p → 1).
En valores de p muy pequeños, la red resultante es una retícula regular y, por lo tanto, tiene un alto coeficiente de agrupamiento. Sin embargo, incluso a una p pequeña, aparecen atajos entre los nodos distantes de la red, lo que reduce drásticamente la longitud promedio del camino más corto (Fig. 1). Watts y Strogatz demostraron que, dependiendo del número de nodos5, es posible encontrar redes que tengan un gran coeficiente de agrupamiento y distancias medias cortas entre nodos para una amplia gama de valores p, reconciliando así el fenómeno del mundo pequeño con el carácter complejo de la red.
Figura 1 | El modelo de red de mundo pequeño. En 1998, Watts y Strogatz1 describieron un modelo que ayuda a explicar las estructuras de las redes en el mundo real. a. Comenzaron con una red regular, representada aquí como nodos conectados en una red triangular en la que cada nodo está conectado a otros seis nodos. b. Luego permitieron que los enlaces entre nodos se reconectaran al azar, con una probabilidad fija de volver a cablear todos los enlaces. A medida que aumenta la probabilidad, un número creciente de atajos (líneas rojas) conecta nodos distantes en la red. Esto genera el efecto del mundo pequeño: todos los nodos de la red se pueden conectar pasando a lo largo de una pequeña cantidad de enlaces entre nodos, pero los nodos vecinos se conectan entre sí, formando camarillas agrupadas.
El modelo de Watts y Strogatz fue inicialmente considerado simplemente como la explicación de seis grados de separación. Pero posiblemente su impacto más importante fue allanar el camino para estudios sobre el efecto de la estructura de red en una amplia gama de fenómenos dinámicos. Otro documento fue también fundamental: en 1999, Barabási y Albert propusieron el modelo de red de "acoplamiento preferencial" 6, que destacó que la distribución de probabilidad que describe el número de conexiones que se forman entre los nodos en las redes reales a menudo se caracteriza por "cola pesada". 'distribuciones, en lugar de la distribución de Poisson predicha por redes aleatorias. El amplio espectro de comportamientos emergentes y transiciones de fase encapsuladas en redes que tienen conectividad agrupada (como en el modelo de Watts y Strogatz) y una conexión heterogénea (como en el modelo de conexión preferencial) atrajeron la atención de científicos de muchos campos.
Siguieron una serie de descubrimientos, destacando cómo la compleja estructura de tales redes sustenta los sistemas del mundo real, con implicaciones para la robustez de la red, la propagación de epidemias, el flujo de información y la sincronización del comportamiento colectivo a través de las redes7,8. Por ejemplo, el patrón de conectividad del mundo pequeño demostró ser la clave para comprender la estructura de la World Wide Web9 y cómo las áreas anatómicas y funcionales del cerebro se comunican entre sí10. Otras propiedades estructurales de las redes se analizaron poco después del 11-13, como la modularidad y el concepto de motivos estructurales, que ayudaron a los científicos a caracterizar y comprender la arquitectura de sistemas vivos y artificiales, desde redes subcelulares hasta ecosistemas e Internet.
La generación actual de investigación en red fertiliza áreas que se benefician de una potencia de cómputo sin precedentes, grandes conjuntos de datos y nuevas técnicas de modelado computacional, y así proporciona un puente entre la dinámica de los nodos individuales y las propiedades emergentes de las redes macroscópicas. Pero la inmediatez y la simplicidad de los modelos de pequeño tamaño y de conexión preferencial todavía sustentan nuestra comprensión de la topología de red. De hecho, la relevancia de estos modelos para diferentes áreas de la ciencia sentó las bases del campo multidisciplinario ahora conocido como ciencia de redes.
Integrar conocimientos y metodologías de campos tan dispares como las ciencias sociales, la física, la biología, la informática y las matemáticas aplicadas no fue fácil. Tomó varios años encontrar un terreno común, acordar definiciones y conciliar y apreciar los diferentes enfoques que cada campo había adoptado para estudiar redes. Este es todavía un trabajo en progreso, que presenta todas las dificultades y trampas inherentes al trabajo interdisciplinario. Sin embargo, en los últimos 20 años ha surgido una vibrante comunidad de ciencia de redes, con sus propias prestigiosas revistas, institutos de investigación y conferencias a las que asistieron miles de científicos.
En el vigésimo aniversario del documento, más de 18,000 documentos han citado el modelo, que ahora se considera una de las topologías de red de referencia. Watts y Strogatz cerraron su periódico diciendo: "Esperamos que nuestro trabajo estimule más estudios de las redes del mundo pequeño". Tal vez ninguna afirmación haya sido nunca más profética.
No hay comentarios:
Publicar un comentario