Páginas

jueves, 1 de agosto de 2019

Modelando las redes a través de la centralidad de intermediación

Nuevo mecanismo de modelado podría cambiar la forma en que vemos las redes sociales


por Dan Carroll, Ingeniería Eléctrica e Informática de la Universidad Carnegie Mellon
TechXplore



Crédito: Universidad Carnegie Mellon.



Los recientes intentos de alto perfil para manipular la percepción y el sentimiento del público a través de las redes sociales han demostrado que es posible que no sepamos tanto sobre la formulación y la evolución de las redes sociales como creemos.

Fue esta brecha en la comprensión lo que motivó a Radu Marculescu, profesor de Kavčić-Moura del Departamento de Ingeniería Eléctrica e Informática de Carnegie Mellon, a ser coautor de un artículo en Scientific Reports que describe un nuevo modelo de cómo las redes sociales cambian y se desarrollan con el tiempo. La investigación, realizada en estrecha colaboración con Mihai Udrescu y Alex Topirceanu del Departamento de Ciencias de la Computación de la Universidad Politehnica de Timişoara, Rumania, propone lo que los autores denominan el modelo de Adjunto Preferencial de Interferencia Ponderada (WBPA).

Al modelar redes sociales, un nodo representa a un solo individuo, y las conexiones entre nodos representan relaciones entre individuos. Los modelos anteriores se han centrado en la cantidad de conexiones que tiene un individuo, también llamado grado de nodo, como la fuerza impulsora detrás de un nodo que adquiere nuevas conexiones.

Por el contrario, el núcleo del nuevo modelo WBPA se centra en la noción de "nodos intermedios". Él y sus colaboradores descubrieron que esta calidad de ser entre comunidades es en realidad un mayor atractivo y motor para la formación de lazos sociales que otras medidas de centralidad como el grado de nodo. En el WBPA, en lugar de examinar únicamente la cantidad de conexiones que tiene un solo nodo, los investigadores ponen más énfasis en las comunidades que conecta un nodo y la calidad de esas conexiones.

"Cuando las personas hacen evaluaciones del atractivo social en situaciones del mundo real, no confían en la ejecución de algoritmos u otros tipos de evaluaciones cuantitativas complejas", dice Marculescu. "En cambio, los individuos toman decisiones basadas en sus percepciones cualitativas. Como tal, la calidad de estar 'en el medio' se puede percibir fácil y rápidamente".

El modelo WBPA también supera otra limitación encontrada en modelos anteriores basados ​​en grados, que permiten que el grado de nodo individual crezca indefinidamente. Esto equivaldría a que un individuo pueda desarrollar un número ilimitado de amistades, un escenario que obviamente es imposible.

"El nuevo modelo se basa en la idea de que los humanos son mejores observando aspectos cualitativos que cuantitativos, por lo que las personas suelen favorecer la inversión en menos lazos sociales cualitativos en lugar de numerosos lazos de menor calidad", dice Marculescu. "Es por eso que hay un proceso de redistribución de nodos intermedios en juego en el WBPA, que limita la cantidad de nuevos enlaces para nodos de alto grado".


Crédito: Universidad Carnegie Mellon.

Este proceso de redistribución explica las limitaciones físicas y mentales del mundo real, lo que limita la cantidad de relaciones que un individuo determinado puede desarrollar y mantener a lo largo de su vida.

Finalmente, el WBPA también puede ofrecer información sobre los posibles medios de un individuo para mejorar su estatus social. Un individuo puede aumentar su influencia personal al ampliar su vecindario a agentes influyentes, lo que a su vez puede provocar un aumento en la fuerza de sus conexiones con los demás.


Crédito: Universidad Carnegie Mellon.

Si bien esta investigación se centra específicamente en las redes sociales, el modelo WBPA podría tener aplicaciones interesantes en todo, desde modelar microbiomas hasta predecir las propiedades de nuevos medicamentos y medicamentos.

El próximo objetivo de Marculescu y sus colaboradores es utilizar los resultados del modelo WBPA para investigar cómo se difunden las opiniones a través de las redes sociales y qué tan robustas pueden actuar estas redes ante los ataques adversos.

No hay comentarios:

Publicar un comentario