Páginas

martes, 18 de julio de 2017

Marketing: Cómo ayuda a la gestión de SEO el uso de grafos

SEO: Cómo impulsar su tráfico de Web con visualización de grafos

Grégory DOMINÉ | Linkurious
En esta entrada de blog nuestros amigos de NetBooster explican cómo convertir los datos de su sitio web en una visualización de grafos para mejorar su palabra clave y las decisiones de contenido de SEO.


Search Engine Optimization es una disciplina de marketing digital que tiene como objetivo mejorar la visibilidad de sitios web en los motores de búsqueda. Una gran parte del trabajo consiste en la minería de datos semánticos para medir el interés y localizar el potencial de crecimiento del tráfico.

Mientras tanto, mediante la ingeniería inversa algoritmo de búsqueda de Google, los expertos SEO tienden a organizar los sitios web en arquitecturas significativas que se rastrean, entendido e indexado por las arañas de Google.

De su blog personal a la venta al por menor en línea de primera clase, la semántica y la arquitectura de la información se convierten en críticas de hecho cuando Google tiene que decidir qué página - de un competidor o de su Web site - alineará primero en las páginas de los resultados de la búsqueda.

SEO orientado a datos

Durante muchos años, la experiencia SEO se basó principalmente en tácticas de prueba y aprendizaje, pero nosotros, en NetBooster, fomentamos el uso de datos para predecir y medir el éxito de SEO.

Mientras que la recolección de datos para dar forma a la estructura del sitio web era un desafío complejo, se hizo obvio que la visualización del gráfico podía ayudarnos a hacer sentido fuera de él: un Web site es apenas otra red de nodos (Webpages) ligados.

Así que empezamos recogiendo datos de SEO: rastreo de sitios, búsqueda centrada en el sitio, búsqueda centrada en el usuario, clasificaciones de sitios.

Rastreo del sitio

Por definición, un sitio web es una red de archivos (la mayoría de las veces los documentos HTML también se llaman páginas web) vinculados entre sí. Pero una página también puede vincularse a otra sin reciprocidad.

De acuerdo con el tamaño del sitio web, la gran cantidad de páginas y enlaces entre ellos puede ser rápidamente abrumadora. Por lo tanto, los expertos SEO utilizan el software para rastrear cada página y cada enlace de un sitio web. El rastreo del sitio resulta en una tabla en la que se enumeran todos (ver datos de ejemplo a continuación: la página car.html tiene un enlace hacia la página plane.html).

Esta red de nodos y enlaces será la base de nuestra base de datos de gráficos.


Búsqueda centrada en el sitio

Google Search Console es una herramienta gratuita que proporciona datos de búsqueda para un sitio determinado. Ofrece a los webmasters una visión general de las actuaciones de su sitio web para cada consulta específica buscada por sus visitantes (ver ejemplos de datos a continuación: la palabra clave ha conducido 20 visitas de Google a la página car.html).


Página fuentePágina destino
mysite.com/transportation/car.htmlmysite.com/transportation/plane.html

Estos datos serán útiles para determinar qué consultas, buscadas en Google, realmente dirigen tráfico a la página de un sitio web. La mayoría de las veces, resulta en miles de entradas.

Búsqueda centrada en el usuario

Google Keyword Planner es otra herramienta gratuita proporcionada por la empresa de Mountain View. Ayuda a los expertos de SEO a pesar volúmenes de búsqueda de miles de consultas y acciones de prioridad (ver ejemplo de datos a continuación: la palabra clave coche se ha buscado 12.000 veces el mes pasado).



CategoryKeyword
Monthly average search volume
Transportationcar
12,000
Transportationplane
8,000
Transportationtrain
4,000


A medida que cada palabra clave está completamente categorizada, los expertos en SEO pueden agruparlos en grupos de intenciones y extrapolar la demanda de búsqueda para propósitos más amplios (por ejemplo, palabras clave como coche, avión y tren podrían agruparse en un grupo de transporte y acumular un volumen de búsqueda de 24.000 consultas por mes).

Esta taxonomía es fundamental para reducir el alcance de las asignaciones de sitios y para priorizar los temas más estratégicos: puede decidir fácilmente si priorizar la creación de contenido dedicado al transporte o al alojamiento.


Visualización del sitio

Después de recopilar e importar los datos en una base de datos de grafos (decidimos usar Neo4J asociado con Linkurious después de resultados infructuosos usando Gephi) pudimos solicitar cualquier nodo de nuestro sitio web y mostrar enlaces entre ellos:

  • Nodos de palabras clave, recopilados a través de datos de búsqueda centrados en el sitio y datos de búsqueda centrados en el usuario;
  • Nodos de página, recopilados a través de datos de rastreo de sitios.

Esto es cuando empezamos a convertir los datos de nuestro sitio web en visualización.

Clasificación por categoría de palabras clave

Una vez importados en la base de datos Neo4J y mostrados a través de Linkurious, ahora podríamos mostrar todas las palabras clave relacionadas con una categoría y ver cuáles de ellas estaban dirigiendo el tráfico al sitio web.

En el siguiente ejemplo, las palabras clave relacionadas con management (strategic management) generaron visitas a 2 páginas del sitio web (nodos grises). El tamaño de los nodos de palabras clave muestra su volumen de búsqueda mensual (manager es más solicitado que management).



Visualización del cluster de palabras clave de management y sus conexiones a páginas web.

En este otro ejemplo, las palabras clave relacionadas con finance no generan tráfico alguno en el sitio web.



Visualización del cluster de palabras clave finance.

Siguiendo esta metodología, el análisis de todos los temas identificados en los datos de búsqueda centrados en el usuario puede caracterizar el tráfico a un sitio web y revelar el potencial de crecimiento: los temas que no tienen una página de respuesta pueden abordarse a través de la creación de contenido.

Creación de página

La creación de páginas que reflejan estructuras semánticas consistentes era una tarea fastidiosa. Y por desgracia, tuvimos que mover cada nodo manualmente para diseñar patrones significativos, ya que aún no sabíamos sobre la opción de peso de ForceLink Layout (que distribuiría nodos según el peso de su enlace) disponible en el SDK.

En la siguiente figura, creamos una nueva página (nodo gris con estrellas) destinada a capturar tráfico de las palabras clave relacionadas con las finanzas: our-finance-programs.html


Visualización de las nuevas conexiones entre la página web y el clúster de palabras clave finance.

Pero estas estructuras pueden ser mucho más complejas, dependiendo del tamaño de los clústeres de palabras clave. En el siguiente ejemplo, las palabras clave relacionadas con el grado de tema, se han reorganizado manualmente en varios subclases, cada uno vinculado a una nueva página dedicada.


Visualización de subgrupos de palabras clave degree y sus respectivas conexiones a páginas web.

Despliegue de contenido

Por último, la visualización de estructuras web que mezclan páginas (existentes o nuevas) y palabras clave (que conducen tráfico o aún no) a menudo resulta en una cartografía compleja.

Pero más allá de su complejidad aparente, tal visualización puede ofrecer una hoja de ruta consistente para la creación y el despliegue de contenido con el fin de ganar más visitantes: cada página existente debe ser editada para dirigir su campo semántico correctamente; Cada nuevo campo semántico puede ser abordado a través de la creación de un contenido específico. Y todos deben estar unidos entre sí dentro de una organización significativa.


Representación de grafos de una estructura de sitio web y las conexiones entre palabras clave, tráfico y páginas web.

PDs: muchas gracias a Olivier Tassel por inspirar esta visualización ya Dimitri Tacita por hacerla posible.

No hay comentarios:

Publicar un comentario